CAPEC-674: Design for FPGA Maliciously Altered

Description
<p>An adversary alters the functionality of a field-programmable gate array (FPGA) by causing an FPGA configuration memory chip reload in order to introduce a malicious function that could result in the FPGA performing or enabling malicious functions on a host system. Prior to the memory chip reload, the adversary alters the program for the FPGA by adding a function to impact system operation.<p>
Extended Description

This attack first requires the adversary to trick the victim into installing a Trojan Horse application on their system, such as a malicious web browser plugin, which the adversary then leverages to mount the attack. The victim interacts with a web application, such as a banking website, in a normal manner and under the assumption that the connection is secure. However, the adversary can now alter and/or reroute traffic between the client application (e.g., web browser) and the coinciding endpoint, while simultaneously displaying intended transactions and data back to the user. The adversary may also be able to glean cookies, HTTP sessions, and SSL client certificates, which can be used to pivot into an authenticated intranet. Identifying AITB is often difficult because these attacks are successful even when security mechanisms such as SSL/PKI and multifactor authentication are present, since they still function as intended during the attack.

Severity :

High

Possibility :

Low

Type :

Detailed
Relationships with other CAPECs

This table shows the other attack patterns and high level categories that are related to this attack pattern.

Prerequisites

This table shows the other attack patterns and high level categories that are related to this attack pattern.

  • An adversary would need to have access to FPGA programming/configuration-related systems in a chip maker’s development environment where FPGAs can be initially configured prior to delivery to a customer or have access to such systems in a customer facility where end-user FPGA configuration/reconfiguration can be performed.
Skills required

This table shows the other attack patterns and high level categories that are related to this attack pattern.

  • High An adversary would need to be skilled in FPGA programming in order to create/manipulate configurations in such a way that when loaded into an FPGA, the end user would be able to observe through testing all user-defined required functions but would be unaware of any additional functions the adversary may have introduced.
Taxonomy mappings

Mappings to ATT&CK, OWASP and other frameworks.

Related CWE

A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful.

Visit http://capec.mitre.org/ for more details.

© cvefeed.io
Latest DB Update: Nov. 05, 2024 14:39