CVE-2022-49194
Raspberry Pi Foundation BCMGENET Use-After-Free Vulnerability
Description
In the Linux kernel, the following vulnerability has been resolved: net: bcmgenet: Use stronger register read/writes to assure ordering GCC12 appears to be much smarter about its dependency tracking and is aware that the relaxed variants are just normal loads and stores and this is causing problems like: [ 210.074549] ------------[ cut here ]------------ [ 210.079223] NETDEV WATCHDOG: enabcm6e4ei0 (bcmgenet): transmit queue 1 timed out [ 210.086717] WARNING: CPU: 1 PID: 0 at net/sched/sch_generic.c:529 dev_watchdog+0x234/0x240 [ 210.095044] Modules linked in: genet(E) nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat] [ 210.146561] ACPI CPPC: PCC check channel failed for ss: 0. ret=-110 [ 210.146927] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G E 5.17.0-rc7G12+ #58 [ 210.153226] CPPC Cpufreq:cppc_scale_freq_workfn: failed to read perf counters [ 210.161349] Hardware name: Raspberry Pi Foundation Raspberry Pi 4 Model B/Raspberry Pi 4 Model B, BIOS EDK2-DEV 02/08/2022 [ 210.161353] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 210.161358] pc : dev_watchdog+0x234/0x240 [ 210.161364] lr : dev_watchdog+0x234/0x240 [ 210.161368] sp : ffff8000080a3a40 [ 210.161370] x29: ffff8000080a3a40 x28: ffffcd425af87000 x27: ffff8000080a3b20 [ 210.205150] x26: ffffcd425aa00000 x25: 0000000000000001 x24: ffffcd425af8ec08 [ 210.212321] x23: 0000000000000100 x22: ffffcd425af87000 x21: ffff55b142688000 [ 210.219491] x20: 0000000000000001 x19: ffff55b1426884c8 x18: ffffffffffffffff [ 210.226661] x17: 64656d6974203120 x16: 0000000000000001 x15: 6d736e617274203a [ 210.233831] x14: 2974656e65676d63 x13: ffffcd4259c300d8 x12: ffffcd425b07d5f0 [ 210.241001] x11: 00000000ffffffff x10: ffffcd425b07d5f0 x9 : ffffcd4258bdad9c [ 210.248171] x8 : 00000000ffffdfff x7 : 000000000000003f x6 : 0000000000000000 [ 210.255341] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000001000 [ 210.262511] x2 : 0000000000001000 x1 : 0000000000000005 x0 : 0000000000000044 [ 210.269682] Call trace: [ 210.272133] dev_watchdog+0x234/0x240 [ 210.275811] call_timer_fn+0x3c/0x15c [ 210.279489] __run_timers.part.0+0x288/0x310 [ 210.283777] run_timer_softirq+0x48/0x80 [ 210.287716] __do_softirq+0x128/0x360 [ 210.291392] __irq_exit_rcu+0x138/0x140 [ 210.295243] irq_exit_rcu+0x1c/0x30 [ 210.298745] el1_interrupt+0x38/0x54 [ 210.302334] el1h_64_irq_handler+0x18/0x24 [ 210.306445] el1h_64_irq+0x7c/0x80 [ 210.309857] arch_cpu_idle+0x18/0x2c [ 210.313445] default_idle_call+0x4c/0x140 [ 210.317470] cpuidle_idle_call+0x14c/0x1a0 [ 210.321584] do_idle+0xb0/0x100 [ 210.324737] cpu_startup_entry+0x30/0x8c [ 210.328675] secondary_start_kernel+0xe4/0x110 [ 210.333138] __secondary_switched+0x94/0x98 The assumption when these were relaxed seems to be that device memory would be mapped non reordering, and that other constructs (spinlocks/etc) would provide the barriers to assure that packet data and in memory rings/queues were ordered with respect to device register reads/writes. This itself seems a bit sketchy, but the real problem with GCC12 is that it is moving the actual reads/writes around at will as though they were independent operations when in truth they are not, but the compiler can't know that. When looking at the assembly dumps for many of these routines its possible to see very clean, but not strictly in program order operations occurring as the compiler would be free to do if these weren't actually register reads/write operations. Its possible to suppress the timeout with a liberal bit of dma_mb()'s sprinkled around but the device still seems unable to reliably send/receive data. A better plan is to use the safer readl/writel everywhere. Since this partially reverts an older commit, which notes the use of the relaxed variants for performance reasons. I would suggest that any performance problems ---truncated---
INFO
Published Date :
Feb. 26, 2025, 7 a.m.
Last Modified :
Feb. 26, 2025, 7 a.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Solution
CVE-2022-49194
vulnerability.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2022-49194
.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2022-49194
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2022-49194
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2022-49194
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2022-49194
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Feb. 26, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: net: bcmgenet: Use stronger register read/writes to assure ordering GCC12 appears to be much smarter about its dependency tracking and is aware that the relaxed variants are just normal loads and stores and this is causing problems like: [ 210.074549] ------------[ cut here ]------------ [ 210.079223] NETDEV WATCHDOG: enabcm6e4ei0 (bcmgenet): transmit queue 1 timed out [ 210.086717] WARNING: CPU: 1 PID: 0 at net/sched/sch_generic.c:529 dev_watchdog+0x234/0x240 [ 210.095044] Modules linked in: genet(E) nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat] [ 210.146561] ACPI CPPC: PCC check channel failed for ss: 0. ret=-110 [ 210.146927] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G E 5.17.0-rc7G12+ #58 [ 210.153226] CPPC Cpufreq:cppc_scale_freq_workfn: failed to read perf counters [ 210.161349] Hardware name: Raspberry Pi Foundation Raspberry Pi 4 Model B/Raspberry Pi 4 Model B, BIOS EDK2-DEV 02/08/2022 [ 210.161353] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 210.161358] pc : dev_watchdog+0x234/0x240 [ 210.161364] lr : dev_watchdog+0x234/0x240 [ 210.161368] sp : ffff8000080a3a40 [ 210.161370] x29: ffff8000080a3a40 x28: ffffcd425af87000 x27: ffff8000080a3b20 [ 210.205150] x26: ffffcd425aa00000 x25: 0000000000000001 x24: ffffcd425af8ec08 [ 210.212321] x23: 0000000000000100 x22: ffffcd425af87000 x21: ffff55b142688000 [ 210.219491] x20: 0000000000000001 x19: ffff55b1426884c8 x18: ffffffffffffffff [ 210.226661] x17: 64656d6974203120 x16: 0000000000000001 x15: 6d736e617274203a [ 210.233831] x14: 2974656e65676d63 x13: ffffcd4259c300d8 x12: ffffcd425b07d5f0 [ 210.241001] x11: 00000000ffffffff x10: ffffcd425b07d5f0 x9 : ffffcd4258bdad9c [ 210.248171] x8 : 00000000ffffdfff x7 : 000000000000003f x6 : 0000000000000000 [ 210.255341] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000001000 [ 210.262511] x2 : 0000000000001000 x1 : 0000000000000005 x0 : 0000000000000044 [ 210.269682] Call trace: [ 210.272133] dev_watchdog+0x234/0x240 [ 210.275811] call_timer_fn+0x3c/0x15c [ 210.279489] __run_timers.part.0+0x288/0x310 [ 210.283777] run_timer_softirq+0x48/0x80 [ 210.287716] __do_softirq+0x128/0x360 [ 210.291392] __irq_exit_rcu+0x138/0x140 [ 210.295243] irq_exit_rcu+0x1c/0x30 [ 210.298745] el1_interrupt+0x38/0x54 [ 210.302334] el1h_64_irq_handler+0x18/0x24 [ 210.306445] el1h_64_irq+0x7c/0x80 [ 210.309857] arch_cpu_idle+0x18/0x2c [ 210.313445] default_idle_call+0x4c/0x140 [ 210.317470] cpuidle_idle_call+0x14c/0x1a0 [ 210.321584] do_idle+0xb0/0x100 [ 210.324737] cpu_startup_entry+0x30/0x8c [ 210.328675] secondary_start_kernel+0xe4/0x110 [ 210.333138] __secondary_switched+0x94/0x98 The assumption when these were relaxed seems to be that device memory would be mapped non reordering, and that other constructs (spinlocks/etc) would provide the barriers to assure that packet data and in memory rings/queues were ordered with respect to device register reads/writes. This itself seems a bit sketchy, but the real problem with GCC12 is that it is moving the actual reads/writes around at will as though they were independent operations when in truth they are not, but the compiler can't know that. When looking at the assembly dumps for many of these routines its possible to see very clean, but not strictly in program order operations occurring as the compiler would be free to do if these weren't actually register reads/write operations. Its possible to suppress the timeout with a liberal bit of dma_mb()'s sprinkled around but the device still seems unable to reliably send/receive data. A better plan is to use the safer readl/writel everywhere. Since this partially reverts an older commit, which notes the use of the relaxed variants for performance reasons. I would suggest that any performance problems ---truncated--- Added Reference https://git.kernel.org/stable/c/06d836801cd82ded282aaf9e888ff9e7e4a88b91 Added Reference https://git.kernel.org/stable/c/1d717816189fd68f9e089cf89ed1f7327d2c2e71 Added Reference https://git.kernel.org/stable/c/8d3ea3d402db94b61075617e71b67459a714a502 Added Reference https://git.kernel.org/stable/c/b26091a02093104259ca64aeca73601e56160d62 Added Reference https://git.kernel.org/stable/c/f49769b462f282477ca801cf648f875b1c5b59db