0.0
NA
CVE-2022-49658
Linux Kernel BPF Pointer Leak Vulnerability
Description

In the Linux kernel, the following vulnerability has been resolved: bpf: Fix insufficient bounds propagation from adjust_scalar_min_max_vals Kuee reported a corner case where the tnum becomes constant after the call to __reg_bound_offset(), but the register's bounds are not, that is, its min bounds are still not equal to the register's max bounds. This in turn allows to leak pointers through turning a pointer register as is into an unknown scalar via adjust_ptr_min_max_vals(). Before: func#0 @0 0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) 1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) 2: (87) r3 = -r3 ; R3_w=scalar() 3: (87) r3 = -r3 ; R3_w=scalar() 4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881) 5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767) 6: (95) exit from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767) 8: (95) exit from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)) <--- [*] 10: (95) exit What can be seen here is that R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) after the operation R3 += -32767 results in a 'malformed' constant, that is, R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)). Intersecting with var_off has not been done at that point via __update_reg_bounds(), which would have improved the umax to be equal to umin. Refactor the tnum <> min/max bounds information flow into a reg_bounds_sync() helper and use it consistently everywhere. After the fix, bounds have been corrected to R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) and thus the register is regarded as a 'proper' constant scalar of 0. After: func#0 @0 0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) 1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) 2: (87) r3 = -r3 ; R3_w=scalar() 3: (87) r3 = -r3 ; R3_w=scalar() 4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881) 5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767) 6: (95) exit from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767) 8: (95) exit from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0 ---truncated---

INFO

Published Date :

Feb. 26, 2025, 7:01 a.m.

Last Modified :

Feb. 26, 2025, 7:01 a.m.

Remotely Exploit :

No

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products

The following products are affected by CVE-2022-49658 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel
References to Advisories, Solutions, and Tools
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2022-49658 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2022-49658 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2022-49658 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2022-49658 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Feb. 26, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: bpf: Fix insufficient bounds propagation from adjust_scalar_min_max_vals Kuee reported a corner case where the tnum becomes constant after the call to __reg_bound_offset(), but the register's bounds are not, that is, its min bounds are still not equal to the register's max bounds. This in turn allows to leak pointers through turning a pointer register as is into an unknown scalar via adjust_ptr_min_max_vals(). Before: func#0 @0 0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) 1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) 2: (87) r3 = -r3 ; R3_w=scalar() 3: (87) r3 = -r3 ; R3_w=scalar() 4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881) 5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767) 6: (95) exit from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767) 8: (95) exit from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)) <--- [*] 10: (95) exit What can be seen here is that R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) after the operation R3 += -32767 results in a 'malformed' constant, that is, R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)). Intersecting with var_off has not been done at that point via __update_reg_bounds(), which would have improved the umax to be equal to umin. Refactor the tnum <> min/max bounds information flow into a reg_bounds_sync() helper and use it consistently everywhere. After the fix, bounds have been corrected to R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) and thus the register is regarded as a 'proper' constant scalar of 0. After: func#0 @0 0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) 1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) 2: (87) r3 = -r3 ; R3_w=scalar() 3: (87) r3 = -r3 ; R3_w=scalar() 4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881) 5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767) 6: (95) exit from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) 7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767) 8: (95) exit from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0 ---truncated---
    Added Reference https://git.kernel.org/stable/c/3844d153a41adea718202c10ae91dc96b37453b5
    Added Reference https://git.kernel.org/stable/c/a7de8d436db92bab8b1f44624297c2554a6ac36b
    Added Reference https://git.kernel.org/stable/c/b2a28bb36664c94375926cbbb91976242847699d
    Added Reference https://git.kernel.org/stable/c/e917be1f83ea14a68b3cf64d3da9968eaf991dae
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
No CVSS metrics available for this vulnerability.