7.8
HIGH
CVE-2022-49840
Linux Kernel BPF Use-After-Free
Description

In the Linux kernel, the following vulnerability has been resolved: bpf, test_run: Fix alignment problem in bpf_prog_test_run_skb() We got a syzkaller problem because of aarch64 alignment fault if KFENCE enabled. When the size from user bpf program is an odd number, like 399, 407, etc, it will cause the struct skb_shared_info's unaligned access. As seen below: BUG: KFENCE: use-after-free read in __skb_clone+0x23c/0x2a0 net/core/skbuff.c:1032 Use-after-free read at 0xffff6254fffac077 (in kfence-#213): __lse_atomic_add arch/arm64/include/asm/atomic_lse.h:26 [inline] arch_atomic_add arch/arm64/include/asm/atomic.h:28 [inline] arch_atomic_inc include/linux/atomic-arch-fallback.h:270 [inline] atomic_inc include/asm-generic/atomic-instrumented.h:241 [inline] __skb_clone+0x23c/0x2a0 net/core/skbuff.c:1032 skb_clone+0xf4/0x214 net/core/skbuff.c:1481 ____bpf_clone_redirect net/core/filter.c:2433 [inline] bpf_clone_redirect+0x78/0x1c0 net/core/filter.c:2420 bpf_prog_d3839dd9068ceb51+0x80/0x330 bpf_dispatcher_nop_func include/linux/bpf.h:728 [inline] bpf_test_run+0x3c0/0x6c0 net/bpf/test_run.c:53 bpf_prog_test_run_skb+0x638/0xa7c net/bpf/test_run.c:594 bpf_prog_test_run kernel/bpf/syscall.c:3148 [inline] __do_sys_bpf kernel/bpf/syscall.c:4441 [inline] __se_sys_bpf+0xad0/0x1634 kernel/bpf/syscall.c:4381 kfence-#213: 0xffff6254fffac000-0xffff6254fffac196, size=407, cache=kmalloc-512 allocated by task 15074 on cpu 0 at 1342.585390s: kmalloc include/linux/slab.h:568 [inline] kzalloc include/linux/slab.h:675 [inline] bpf_test_init.isra.0+0xac/0x290 net/bpf/test_run.c:191 bpf_prog_test_run_skb+0x11c/0xa7c net/bpf/test_run.c:512 bpf_prog_test_run kernel/bpf/syscall.c:3148 [inline] __do_sys_bpf kernel/bpf/syscall.c:4441 [inline] __se_sys_bpf+0xad0/0x1634 kernel/bpf/syscall.c:4381 __arm64_sys_bpf+0x50/0x60 kernel/bpf/syscall.c:4381 To fix the problem, we adjust @size so that (@size + @hearoom) is a multiple of SMP_CACHE_BYTES. So we make sure the struct skb_shared_info is aligned to a cache line.

INFO

Published Date :

May 1, 2025, 3:16 p.m.

Last Modified :

May 7, 2025, 1:32 p.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

5.9

Exploitability Score :

1.8
Affected Products

The following products are affected by CVE-2022-49840 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2022-49840 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2022-49840 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • Initial Analysis by [email protected]

    May. 07, 2025

    Action Type Old Value New Value
    Added CVSS V3.1 AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
    Added CWE CWE-416
    Added CPE Configuration OR *cpe:2.3:o:linux:linux_kernel:6.1:rc2:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.1:rc5:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.1:rc1:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.1:rc3:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.1:rc4:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.11 up to (excluding) 5.15.80 *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 4.20 up to (excluding) 5.4.225 *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 4.15 up to (excluding) 4.19.267 *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.16 up to (excluding) 6.0.10 *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 5.5 up to (excluding) 5.10.156 *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 4.12 up to (excluding) 4.14.300
    Added Reference Type kernel.org: https://git.kernel.org/stable/c/047824a730699c6c66df43306b80f700c9dfc2fd Types: Patch
    Added Reference Type kernel.org: https://git.kernel.org/stable/c/1b597f2d6a55e9f549989913860ad5170da04964 Types: Patch
    Added Reference Type kernel.org: https://git.kernel.org/stable/c/730fb1ef974a13915bc7651364d8b3318891cd70 Types: Patch
    Added Reference Type kernel.org: https://git.kernel.org/stable/c/7a704dbfd3735304e261f2787c52fbc7c3884736 Types: Patch
    Added Reference Type kernel.org: https://git.kernel.org/stable/c/d3fd203f36d46aa29600a72d57a1b61af80e4a25 Types: Patch
    Added Reference Type kernel.org: https://git.kernel.org/stable/c/e60f37a1d379c821c17b08f366412dce9ef3d99f Types: Patch
    Added Reference Type kernel.org: https://git.kernel.org/stable/c/eaa8edd86514afac9deb9bf9a5053e74f37edf40 Types: Patch
  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    May. 01, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: bpf, test_run: Fix alignment problem in bpf_prog_test_run_skb() We got a syzkaller problem because of aarch64 alignment fault if KFENCE enabled. When the size from user bpf program is an odd number, like 399, 407, etc, it will cause the struct skb_shared_info's unaligned access. As seen below: BUG: KFENCE: use-after-free read in __skb_clone+0x23c/0x2a0 net/core/skbuff.c:1032 Use-after-free read at 0xffff6254fffac077 (in kfence-#213): __lse_atomic_add arch/arm64/include/asm/atomic_lse.h:26 [inline] arch_atomic_add arch/arm64/include/asm/atomic.h:28 [inline] arch_atomic_inc include/linux/atomic-arch-fallback.h:270 [inline] atomic_inc include/asm-generic/atomic-instrumented.h:241 [inline] __skb_clone+0x23c/0x2a0 net/core/skbuff.c:1032 skb_clone+0xf4/0x214 net/core/skbuff.c:1481 ____bpf_clone_redirect net/core/filter.c:2433 [inline] bpf_clone_redirect+0x78/0x1c0 net/core/filter.c:2420 bpf_prog_d3839dd9068ceb51+0x80/0x330 bpf_dispatcher_nop_func include/linux/bpf.h:728 [inline] bpf_test_run+0x3c0/0x6c0 net/bpf/test_run.c:53 bpf_prog_test_run_skb+0x638/0xa7c net/bpf/test_run.c:594 bpf_prog_test_run kernel/bpf/syscall.c:3148 [inline] __do_sys_bpf kernel/bpf/syscall.c:4441 [inline] __se_sys_bpf+0xad0/0x1634 kernel/bpf/syscall.c:4381 kfence-#213: 0xffff6254fffac000-0xffff6254fffac196, size=407, cache=kmalloc-512 allocated by task 15074 on cpu 0 at 1342.585390s: kmalloc include/linux/slab.h:568 [inline] kzalloc include/linux/slab.h:675 [inline] bpf_test_init.isra.0+0xac/0x290 net/bpf/test_run.c:191 bpf_prog_test_run_skb+0x11c/0xa7c net/bpf/test_run.c:512 bpf_prog_test_run kernel/bpf/syscall.c:3148 [inline] __do_sys_bpf kernel/bpf/syscall.c:4441 [inline] __se_sys_bpf+0xad0/0x1634 kernel/bpf/syscall.c:4381 __arm64_sys_bpf+0x50/0x60 kernel/bpf/syscall.c:4381 To fix the problem, we adjust @size so that (@size + @hearoom) is a multiple of SMP_CACHE_BYTES. So we make sure the struct skb_shared_info is aligned to a cache line.
    Added Reference https://git.kernel.org/stable/c/047824a730699c6c66df43306b80f700c9dfc2fd
    Added Reference https://git.kernel.org/stable/c/1b597f2d6a55e9f549989913860ad5170da04964
    Added Reference https://git.kernel.org/stable/c/730fb1ef974a13915bc7651364d8b3318891cd70
    Added Reference https://git.kernel.org/stable/c/7a704dbfd3735304e261f2787c52fbc7c3884736
    Added Reference https://git.kernel.org/stable/c/d3fd203f36d46aa29600a72d57a1b61af80e4a25
    Added Reference https://git.kernel.org/stable/c/e60f37a1d379c821c17b08f366412dce9ef3d99f
    Added Reference https://git.kernel.org/stable/c/eaa8edd86514afac9deb9bf9a5053e74f37edf40
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2022-49840 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2022-49840 weaknesses.

CVSS31 - Vulnerability Scoring System
Attack Vector
Attack Complexity
Privileges Required
User Interaction
Scope
Confidentiality
Integrity
Availability
© cvefeed.io
Latest DB Update: Jun. 08, 2025 0:02