CVE-2022-49882
Xen KVM Use-After-Free vulnerability
Description
In the Linux kernel, the following vulnerability has been resolved: KVM: Reject attempts to consume or refresh inactive gfn_to_pfn_cache Reject kvm_gpc_check() and kvm_gpc_refresh() if the cache is inactive. Not checking the active flag during refresh is particularly egregious, as KVM can end up with a valid, inactive cache, which can lead to a variety of use-after-free bugs, e.g. consuming a NULL kernel pointer or missing an mmu_notifier invalidation due to the cache not being on the list of gfns to invalidate. Note, "active" needs to be set if and only if the cache is on the list of caches, i.e. is reachable via mmu_notifier events. If a relevant mmu_notifier event occurs while the cache is "active" but not on the list, KVM will not acquire the cache's lock and so will not serailize the mmu_notifier event with active users and/or kvm_gpc_refresh(). A race between KVM_XEN_ATTR_TYPE_SHARED_INFO and KVM_XEN_HVM_EVTCHN_SEND can be exploited to trigger the bug. 1. Deactivate shinfo cache: kvm_xen_hvm_set_attr case KVM_XEN_ATTR_TYPE_SHARED_INFO kvm_gpc_deactivate kvm_gpc_unmap gpc->valid = false gpc->khva = NULL gpc->active = false Result: active = false, valid = false 2. Cause cache refresh: kvm_arch_vm_ioctl case KVM_XEN_HVM_EVTCHN_SEND kvm_xen_hvm_evtchn_send kvm_xen_set_evtchn kvm_xen_set_evtchn_fast kvm_gpc_check return -EWOULDBLOCK because !gpc->valid kvm_xen_set_evtchn_fast return -EWOULDBLOCK kvm_gpc_refresh hva_to_pfn_retry gpc->valid = true gpc->khva = not NULL Result: active = false, valid = true 3. Race ioctl KVM_XEN_HVM_EVTCHN_SEND against ioctl KVM_XEN_ATTR_TYPE_SHARED_INFO: kvm_arch_vm_ioctl case KVM_XEN_HVM_EVTCHN_SEND kvm_xen_hvm_evtchn_send kvm_xen_set_evtchn kvm_xen_set_evtchn_fast read_lock gpc->lock kvm_xen_hvm_set_attr case KVM_XEN_ATTR_TYPE_SHARED_INFO mutex_lock kvm->lock kvm_xen_shared_info_init kvm_gpc_activate gpc->khva = NULL kvm_gpc_check [ Check passes because gpc->valid is still true, even though gpc->khva is already NULL. ] shinfo = gpc->khva pending_bits = shinfo->evtchn_pending CRASH: test_and_set_bit(..., pending_bits)
INFO
Published Date :
May 1, 2025, 3:16 p.m.
Last Modified :
May 2, 2025, 1:52 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2022-49882
.
URL | Resource |
---|---|
https://git.kernel.org/stable/c/bfa9672f8fc9eb118124bab61899d2dd497f95ba | |
https://git.kernel.org/stable/c/ecbcf030b45666ad11bc98565e71dfbcb7be4393 |
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2022-49882
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2022-49882
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
May. 01, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: KVM: Reject attempts to consume or refresh inactive gfn_to_pfn_cache Reject kvm_gpc_check() and kvm_gpc_refresh() if the cache is inactive. Not checking the active flag during refresh is particularly egregious, as KVM can end up with a valid, inactive cache, which can lead to a variety of use-after-free bugs, e.g. consuming a NULL kernel pointer or missing an mmu_notifier invalidation due to the cache not being on the list of gfns to invalidate. Note, "active" needs to be set if and only if the cache is on the list of caches, i.e. is reachable via mmu_notifier events. If a relevant mmu_notifier event occurs while the cache is "active" but not on the list, KVM will not acquire the cache's lock and so will not serailize the mmu_notifier event with active users and/or kvm_gpc_refresh(). A race between KVM_XEN_ATTR_TYPE_SHARED_INFO and KVM_XEN_HVM_EVTCHN_SEND can be exploited to trigger the bug. 1. Deactivate shinfo cache: kvm_xen_hvm_set_attr case KVM_XEN_ATTR_TYPE_SHARED_INFO kvm_gpc_deactivate kvm_gpc_unmap gpc->valid = false gpc->khva = NULL gpc->active = false Result: active = false, valid = false 2. Cause cache refresh: kvm_arch_vm_ioctl case KVM_XEN_HVM_EVTCHN_SEND kvm_xen_hvm_evtchn_send kvm_xen_set_evtchn kvm_xen_set_evtchn_fast kvm_gpc_check return -EWOULDBLOCK because !gpc->valid kvm_xen_set_evtchn_fast return -EWOULDBLOCK kvm_gpc_refresh hva_to_pfn_retry gpc->valid = true gpc->khva = not NULL Result: active = false, valid = true 3. Race ioctl KVM_XEN_HVM_EVTCHN_SEND against ioctl KVM_XEN_ATTR_TYPE_SHARED_INFO: kvm_arch_vm_ioctl case KVM_XEN_HVM_EVTCHN_SEND kvm_xen_hvm_evtchn_send kvm_xen_set_evtchn kvm_xen_set_evtchn_fast read_lock gpc->lock kvm_xen_hvm_set_attr case KVM_XEN_ATTR_TYPE_SHARED_INFO mutex_lock kvm->lock kvm_xen_shared_info_init kvm_gpc_activate gpc->khva = NULL kvm_gpc_check [ Check passes because gpc->valid is still true, even though gpc->khva is already NULL. ] shinfo = gpc->khva pending_bits = shinfo->evtchn_pending CRASH: test_and_set_bit(..., pending_bits) Added Reference https://git.kernel.org/stable/c/bfa9672f8fc9eb118124bab61899d2dd497f95ba Added Reference https://git.kernel.org/stable/c/ecbcf030b45666ad11bc98565e71dfbcb7be4393
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2022-49882
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2022-49882
weaknesses.