CVE-2022-49990
"IBM s390 Linux Kernel Double Free Vulnerability"
Description
In the Linux kernel, the following vulnerability has been resolved: s390: fix double free of GS and RI CBs on fork() failure The pointers for guarded storage and runtime instrumentation control blocks are stored in the thread_struct of the associated task. These pointers are initially copied on fork() via arch_dup_task_struct() and then cleared via copy_thread() before fork() returns. If fork() happens to fail after the initial task dup and before copy_thread(), the newly allocated task and associated thread_struct memory are freed via free_task() -> arch_release_task_struct(). This results in a double free of the guarded storage and runtime info structs because the fields in the failed task still refer to memory associated with the source task. This problem can manifest as a BUG_ON() in set_freepointer() (with CONFIG_SLAB_FREELIST_HARDENED enabled) or KASAN splat (if enabled) when running trinity syscall fuzz tests on s390x. To avoid this problem, clear the associated pointer fields in arch_dup_task_struct() immediately after the new task is copied. Note that the RI flag is still cleared in copy_thread() because it resides in thread stack memory and that is where stack info is copied.
INFO
Published Date :
June 18, 2025, 11:15 a.m.
Last Modified :
June 18, 2025, 1:46 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2022-49990
.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2022-49990
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2022-49990
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2022-49990
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2022-49990
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jun. 18, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: s390: fix double free of GS and RI CBs on fork() failure The pointers for guarded storage and runtime instrumentation control blocks are stored in the thread_struct of the associated task. These pointers are initially copied on fork() via arch_dup_task_struct() and then cleared via copy_thread() before fork() returns. If fork() happens to fail after the initial task dup and before copy_thread(), the newly allocated task and associated thread_struct memory are freed via free_task() -> arch_release_task_struct(). This results in a double free of the guarded storage and runtime info structs because the fields in the failed task still refer to memory associated with the source task. This problem can manifest as a BUG_ON() in set_freepointer() (with CONFIG_SLAB_FREELIST_HARDENED enabled) or KASAN splat (if enabled) when running trinity syscall fuzz tests on s390x. To avoid this problem, clear the associated pointer fields in arch_dup_task_struct() immediately after the new task is copied. Note that the RI flag is still cleared in copy_thread() because it resides in thread stack memory and that is where stack info is copied. Added Reference https://git.kernel.org/stable/c/13cccafe0edcd03bf1c841de8ab8a1c8e34f77d9 Added Reference https://git.kernel.org/stable/c/25a95303b9e513cd2978aacc385d06e6fec23d07 Added Reference https://git.kernel.org/stable/c/297ae7e87a87a001dd3dfeac1cb26a42fd929708 Added Reference https://git.kernel.org/stable/c/8195e065abf3df84eb0ad2987e76a40f21d1791c Added Reference https://git.kernel.org/stable/c/cacd522e6652fbc2dc0cc6ae11c4e30782fef14b Added Reference https://git.kernel.org/stable/c/fbdc482d43eda40a70de4b0155843d5472f6de62