0.0
NA
CVE-2022-50396
net: sched: fix memory leak in tcindex_set_parms
Description

In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_set_parms Syzkaller reports a memory leak as follows: ==================================== BUG: memory leak unreferenced object 0xffff88810c287f00 (size 256): comm "syz-executor105", pid 3600, jiffies 4294943292 (age 12.990s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff814cf9f0>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1046 [<ffffffff839c9e07>] kmalloc include/linux/slab.h:576 [inline] [<ffffffff839c9e07>] kmalloc_array include/linux/slab.h:627 [inline] [<ffffffff839c9e07>] kcalloc include/linux/slab.h:659 [inline] [<ffffffff839c9e07>] tcf_exts_init include/net/pkt_cls.h:250 [inline] [<ffffffff839c9e07>] tcindex_set_parms+0xa7/0xbe0 net/sched/cls_tcindex.c:342 [<ffffffff839caa1f>] tcindex_change+0xdf/0x120 net/sched/cls_tcindex.c:553 [<ffffffff8394db62>] tc_new_tfilter+0x4f2/0x1100 net/sched/cls_api.c:2147 [<ffffffff8389e91c>] rtnetlink_rcv_msg+0x4dc/0x5d0 net/core/rtnetlink.c:6082 [<ffffffff839eba67>] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2540 [<ffffffff839eab87>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] [<ffffffff839eab87>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345 [<ffffffff839eb046>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921 [<ffffffff8383e796>] sock_sendmsg_nosec net/socket.c:714 [inline] [<ffffffff8383e796>] sock_sendmsg+0x56/0x80 net/socket.c:734 [<ffffffff8383eb08>] ____sys_sendmsg+0x178/0x410 net/socket.c:2482 [<ffffffff83843678>] ___sys_sendmsg+0xa8/0x110 net/socket.c:2536 [<ffffffff838439c5>] __sys_sendmmsg+0x105/0x330 net/socket.c:2622 [<ffffffff83843c14>] __do_sys_sendmmsg net/socket.c:2651 [inline] [<ffffffff83843c14>] __se_sys_sendmmsg net/socket.c:2648 [inline] [<ffffffff83843c14>] __x64_sys_sendmmsg+0x24/0x30 net/socket.c:2648 [<ffffffff84605fd5>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84605fd5>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [<ffffffff84800087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd ==================================== Kernel uses tcindex_change() to change an existing filter properties. Yet the problem is that, during the process of changing, if `old_r` is retrieved from `p->perfect`, then kernel uses tcindex_alloc_perfect_hash() to newly allocate filter results, uses tcindex_filter_result_init() to clear the old filter result, without destroying its tcf_exts structure, which triggers the above memory leak. To be more specific, there are only two source for the `old_r`, according to the tcindex_lookup(). `old_r` is retrieved from `p->perfect`, or `old_r` is retrieved from `p->h`. * If `old_r` is retrieved from `p->perfect`, kernel uses tcindex_alloc_perfect_hash() to newly allocate the filter results. Then `r` is assigned with `cp->perfect + handle`, which is newly allocated. So condition `old_r && old_r != r` is true in this situation, and kernel uses tcindex_filter_result_init() to clear the old filter result, without destroying its tcf_exts structure * If `old_r` is retrieved from `p->h`, then `p->perfect` is NULL according to the tcindex_lookup(). Considering that `cp->h` is directly copied from `p->h` and `p->perfect` is NULL, `r` is assigned with `tcindex_lookup(cp, handle)`, whose value should be the same as `old_r`, so condition `old_r && old_r != r` is false in this situation, kernel ignores using tcindex_filter_result_init() to clear the old filter result. So only when `old_r` is retrieved from `p->perfect` does kernel use tcindex_filter_result_init() to clear the old filter result, which triggers the above memory leak. Considering that there already exists a tc_filter_wq workqueue to destroy the old tcindex_d ---truncated---

INFO

Published Date :

Sept. 18, 2025, 2:15 p.m.

Last Modified :

Sept. 18, 2025, 2:15 p.m.

Remotely Exploit :

No

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products

The following products are affected by CVE-2022-50396 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

No affected product recoded yet

Solution
Fix a memory leak in the Linux kernel's tcindex_set_parms function by properly destroying tcf_exts structures.
  • Apply the patch to address the memory leak.
  • Update the Linux kernel to the patched version.
  • Ensure tcf_exts structures are destroyed.
  • Rebuild the kernel with the fix.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2022-50396 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2022-50396 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2022-50396 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2022-50396 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Sep. 18, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_set_parms Syzkaller reports a memory leak as follows: ==================================== BUG: memory leak unreferenced object 0xffff88810c287f00 (size 256): comm "syz-executor105", pid 3600, jiffies 4294943292 (age 12.990s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff814cf9f0>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1046 [<ffffffff839c9e07>] kmalloc include/linux/slab.h:576 [inline] [<ffffffff839c9e07>] kmalloc_array include/linux/slab.h:627 [inline] [<ffffffff839c9e07>] kcalloc include/linux/slab.h:659 [inline] [<ffffffff839c9e07>] tcf_exts_init include/net/pkt_cls.h:250 [inline] [<ffffffff839c9e07>] tcindex_set_parms+0xa7/0xbe0 net/sched/cls_tcindex.c:342 [<ffffffff839caa1f>] tcindex_change+0xdf/0x120 net/sched/cls_tcindex.c:553 [<ffffffff8394db62>] tc_new_tfilter+0x4f2/0x1100 net/sched/cls_api.c:2147 [<ffffffff8389e91c>] rtnetlink_rcv_msg+0x4dc/0x5d0 net/core/rtnetlink.c:6082 [<ffffffff839eba67>] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2540 [<ffffffff839eab87>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] [<ffffffff839eab87>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345 [<ffffffff839eb046>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921 [<ffffffff8383e796>] sock_sendmsg_nosec net/socket.c:714 [inline] [<ffffffff8383e796>] sock_sendmsg+0x56/0x80 net/socket.c:734 [<ffffffff8383eb08>] ____sys_sendmsg+0x178/0x410 net/socket.c:2482 [<ffffffff83843678>] ___sys_sendmsg+0xa8/0x110 net/socket.c:2536 [<ffffffff838439c5>] __sys_sendmmsg+0x105/0x330 net/socket.c:2622 [<ffffffff83843c14>] __do_sys_sendmmsg net/socket.c:2651 [inline] [<ffffffff83843c14>] __se_sys_sendmmsg net/socket.c:2648 [inline] [<ffffffff83843c14>] __x64_sys_sendmmsg+0x24/0x30 net/socket.c:2648 [<ffffffff84605fd5>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84605fd5>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [<ffffffff84800087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd ==================================== Kernel uses tcindex_change() to change an existing filter properties. Yet the problem is that, during the process of changing, if `old_r` is retrieved from `p->perfect`, then kernel uses tcindex_alloc_perfect_hash() to newly allocate filter results, uses tcindex_filter_result_init() to clear the old filter result, without destroying its tcf_exts structure, which triggers the above memory leak. To be more specific, there are only two source for the `old_r`, according to the tcindex_lookup(). `old_r` is retrieved from `p->perfect`, or `old_r` is retrieved from `p->h`. * If `old_r` is retrieved from `p->perfect`, kernel uses tcindex_alloc_perfect_hash() to newly allocate the filter results. Then `r` is assigned with `cp->perfect + handle`, which is newly allocated. So condition `old_r && old_r != r` is true in this situation, and kernel uses tcindex_filter_result_init() to clear the old filter result, without destroying its tcf_exts structure * If `old_r` is retrieved from `p->h`, then `p->perfect` is NULL according to the tcindex_lookup(). Considering that `cp->h` is directly copied from `p->h` and `p->perfect` is NULL, `r` is assigned with `tcindex_lookup(cp, handle)`, whose value should be the same as `old_r`, so condition `old_r && old_r != r` is false in this situation, kernel ignores using tcindex_filter_result_init() to clear the old filter result. So only when `old_r` is retrieved from `p->perfect` does kernel use tcindex_filter_result_init() to clear the old filter result, which triggers the above memory leak. Considering that there already exists a tc_filter_wq workqueue to destroy the old tcindex_d ---truncated---
    Added Reference https://git.kernel.org/stable/c/399ab7fe0fa0d846881685fd4e57e9a8ef7559f7
    Added Reference https://git.kernel.org/stable/c/55ac68b53f1cea1926ee2313afc5d66b91daad71
    Added Reference https://git.kernel.org/stable/c/6c55953e232ea668731091d111066521f3b7719b
    Added Reference https://git.kernel.org/stable/c/b314f6c3512108d7a656c5caf07c82d1bbbdc0f1
    Added Reference https://git.kernel.org/stable/c/c4de6057e7c6654983acb63d939d26ac0d7bbf39
    Added Reference https://git.kernel.org/stable/c/facc4405e8b7407e03216207b1d1d640127de0c8
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
No CVSS metrics available for this vulnerability.