0.0
NA
CVE-2022-50450
libbpf: Use elf_getshdrnum() instead of e_shnum
Description

In the Linux kernel, the following vulnerability has been resolved: libbpf: Use elf_getshdrnum() instead of e_shnum This commit replace e_shnum with the elf_getshdrnum() helper to fix two oss-fuzz-reported heap-buffer overflow in __bpf_object__open. Both reports are incorrectly marked as fixed and while still being reproducible in the latest libbpf. # clusterfuzz-testcase-minimized-bpf-object-fuzzer-5747922482888704 libbpf: loading object 'fuzz-object' from buffer libbpf: sec_cnt is 0 libbpf: elf: section(1) .data, size 0, link 538976288, flags 2020202020202020, type=2 libbpf: elf: section(2) .data, size 32, link 538976288, flags 202020202020ff20, type=1 ================================================================= ==13==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000000c0 at pc 0x0000005a7b46 bp 0x7ffd12214af0 sp 0x7ffd12214ae8 WRITE of size 4 at 0x6020000000c0 thread T0 SCARINESS: 46 (4-byte-write-heap-buffer-overflow-far-from-bounds) #0 0x5a7b45 in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3414:24 #1 0x5733c0 in bpf_object_open /src/libbpf/src/libbpf.c:7223:16 #2 0x5739fd in bpf_object__open_mem /src/libbpf/src/libbpf.c:7263:20 ... The issue lie in libbpf's direct use of e_shnum field in ELF header as the section header count. Where as libelf implemented an extra logic that, when e_shnum == 0 && e_shoff != 0, will use sh_size member of the initial section header as the real section header count (part of ELF spec to accommodate situation where section header counter is larger than SHN_LORESERVE). The above inconsistency lead to libbpf writing into a zero-entry calloc area. So intead of using e_shnum directly, use the elf_getshdrnum() helper provided by libelf to retrieve the section header counter into sec_cnt.

INFO

Published Date :

Oct. 1, 2025, 12:15 p.m.

Last Modified :

Oct. 1, 2025, 12:15 p.m.

Remotely Exploit :

No

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products

The following products are affected by CVE-2022-50450 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

No affected product recoded yet

Solution
Update libbpf to use elf_getshdrnum() for section header count.
  • Update to a version of libbpf that uses elf_getshdrnum().
  • Ensure ELF headers are correctly parsed.
  • Validate section header counts.
  • Apply security patches for libbpf.
References to Advisories, Solutions, and Tools

Here, you will find a curated list of external links that provide in-depth information, practical solutions, and valuable tools related to CVE-2022-50450.

URL Resource
https://git.kernel.org/stable/c/51deedc9b8680953437dfe359e5268120de10e30
https://git.kernel.org/stable/c/622ff59742fe7bf53c06a57332040fa0e08b8242
https://git.kernel.org/stable/c/854f8c61422053f71e3cf0c4abf757c8aa5c748d
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2022-50450 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2022-50450 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2022-50450 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2022-50450 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Oct. 01, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: libbpf: Use elf_getshdrnum() instead of e_shnum This commit replace e_shnum with the elf_getshdrnum() helper to fix two oss-fuzz-reported heap-buffer overflow in __bpf_object__open. Both reports are incorrectly marked as fixed and while still being reproducible in the latest libbpf. # clusterfuzz-testcase-minimized-bpf-object-fuzzer-5747922482888704 libbpf: loading object 'fuzz-object' from buffer libbpf: sec_cnt is 0 libbpf: elf: section(1) .data, size 0, link 538976288, flags 2020202020202020, type=2 libbpf: elf: section(2) .data, size 32, link 538976288, flags 202020202020ff20, type=1 ================================================================= ==13==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000000c0 at pc 0x0000005a7b46 bp 0x7ffd12214af0 sp 0x7ffd12214ae8 WRITE of size 4 at 0x6020000000c0 thread T0 SCARINESS: 46 (4-byte-write-heap-buffer-overflow-far-from-bounds) #0 0x5a7b45 in bpf_object__elf_collect /src/libbpf/src/libbpf.c:3414:24 #1 0x5733c0 in bpf_object_open /src/libbpf/src/libbpf.c:7223:16 #2 0x5739fd in bpf_object__open_mem /src/libbpf/src/libbpf.c:7263:20 ... The issue lie in libbpf's direct use of e_shnum field in ELF header as the section header count. Where as libelf implemented an extra logic that, when e_shnum == 0 && e_shoff != 0, will use sh_size member of the initial section header as the real section header count (part of ELF spec to accommodate situation where section header counter is larger than SHN_LORESERVE). The above inconsistency lead to libbpf writing into a zero-entry calloc area. So intead of using e_shnum directly, use the elf_getshdrnum() helper provided by libelf to retrieve the section header counter into sec_cnt.
    Added Reference https://git.kernel.org/stable/c/51deedc9b8680953437dfe359e5268120de10e30
    Added Reference https://git.kernel.org/stable/c/622ff59742fe7bf53c06a57332040fa0e08b8242
    Added Reference https://git.kernel.org/stable/c/854f8c61422053f71e3cf0c4abf757c8aa5c748d
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
No CVSS metrics available for this vulnerability.