6.8
MEDIUM
CVE-2023-28841
Docker Moby Swarm Mode Overlay Network IPSec Encryption Bypass
Description

Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (`dockerd`), which is developed as moby/moby is commonly referred to as *Docker*. Swarm Mode, which is compiled in and delivered by default in `dockerd` and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code. The `overlay` network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with the VXLAN metadata, including a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes. Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption. When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the `u32` iptables extension provided by the `xt_u32` kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN. An iptables rule designates outgoing VXLAN datagrams with a VNI that corresponds to an encrypted overlay network for IPsec encapsulation. Encrypted overlay networks on affected platforms silently transmit unencrypted data. As a result, `overlay` networks may appear to be functional, passing traffic as expected, but without any of the expected confidentiality or data integrity guarantees. It is possible for an attacker sitting in a trusted position on the network to read all of the application traffic that is moving across the overlay network, resulting in unexpected secrets or user data disclosure. Thus, because many database protocols, internal APIs, etc. are not protected by a second layer of encryption, a user may use Swarm encrypted overlay networks to provide confidentiality, which due to this vulnerability this is no longer guaranteed. Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16. Some workarounds are available. Close the VXLAN port (by default, UDP port 4789) to outgoing traffic at the Internet boundary in order to prevent unintentionally leaking unencrypted traffic over the Internet, and/or ensure that the `xt_u32` kernel module is available on all nodes of the Swarm cluster.

INFO

Published Date :

April 4, 2023, 10:15 p.m.

Last Modified :

Sept. 15, 2023, 9:15 p.m.

Remotely Exploitable :

Yes !

Impact Score :

4.0

Exploitability Score :

2.2
Public PoC/Exploit Available at Github

CVE-2023-28841 has a 1 public PoC/Exploit available at Github. Go to the Public Exploits tab to see the list.

Affected Products

The following products are affected by CVE-2023-28841 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Mobyproject moby

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Security advisory data for Wolfi

no-ghaudit-default-permissions

Shell

Updated: 1 week, 5 days ago
14 stars 57 fork 57 watcher
Born at : May 1, 2023, 1:49 p.m. This repo has been linked 4 different CVEs too.

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2023-28841 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2023-28841 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • CVE Modified by [email protected]

    May. 14, 2024

    Action Type Old Value New Value
  • CVE Modified by [email protected]

    Sep. 15, 2023

    Action Type Old Value New Value
    Added Reference https://lists.fedoraproject.org/archives/list/[email protected]/message/XNF4OLYZRQE75EB5TW5N42FSXHBXGWFE/ [No Types Assigned]
  • CVE Modified by [email protected]

    Sep. 05, 2023

    Action Type Old Value New Value
    Added Reference https://lists.fedoraproject.org/archives/list/[email protected]/message/LYZOKMMVX4SIEHPJW3SJUQGMO5YZCPHC/ [No Types Assigned]
  • CVE Modified by [email protected]

    Aug. 30, 2023

    Action Type Old Value New Value
    Changed Description Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (`dockerd`), which is developed as moby/moby is commonly referred to as *Docker*. Swarm Mode, which is compiled in and delivered by default in `dockerd` and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code. The `overlay` network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with the VXLAN metadata, including a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes. Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption. When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the `u32` iptables extension provided by the `xt_u32` kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN. An iptables rule designates outgoing VXLAN datagrams with a VNI that corresponds to an encrypted overlay network for IPsec encapsulation. Encrypted overlay networks on affected platforms silently transmit unencrypted data. As a result, `overlay` networks may appear to be functional, passing traffic as expected, but without any of the expected confidentiality or data integrity guarantees. It is possible for an attacker sitting in a trusted position on the network to read all of the application traffic that is moving across the overlay network, resulting in unexpected secrets or user data disclosure. Thus, because many database protocols, internal APIs, etc. are not protected by a second layer of encryption, a user may use Swarm encrypted overlay networks to provide confidentiality, which due to this vulnerability this is no longer guaranteed. Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16. Some workarounds are available. Close the VXLAN port (by default, UDP port 4789) to outgoing traffic at the Internet boundary in order to prevent unintentionally leaking unencrypted traffic over the Internet, and/or ensure that the `xt_u32` kernel module is available on all nodes of the Swarm cluster. Moby is an open source container framework developed by Docker Inc. that is distributed as Docker, Mirantis Container Runtime, and various other downstream projects/products. The Moby daemon component (`dockerd`), which is developed as moby/moby is commonly referred to as *Docker*. Swarm Mode, which is compiled in and delivered by default in `dockerd` and is thus present in most major Moby downstreams, is a simple, built-in container orchestrator that is implemented through a combination of SwarmKit and supporting network code. The `overlay` network driver is a core feature of Swarm Mode, providing isolated virtual LANs that allow communication between containers and services across the cluster. This driver is an implementation/user of VXLAN, which encapsulates link-layer (Ethernet) frames in UDP datagrams that tag the frame with the VXLAN metadata, including a VXLAN Network ID (VNI) that identifies the originating overlay network. In addition, the overlay network driver supports an optional, off-by-default encrypted mode, which is especially useful when VXLAN packets traverses an untrusted network between nodes. Encrypted overlay networks function by encapsulating the VXLAN datagrams through the use of the IPsec Encapsulating Security Payload protocol in Transport mode. By deploying IPSec encapsulation, encrypted overlay networks gain the additional properties of source authentication through cryptographic proof, data integrity through check-summing, and confidentiality through encryption. When setting an endpoint up on an encrypted overlay network, Moby installs three iptables (Linux kernel firewall) rules that enforce both incoming and outgoing IPSec. These rules rely on the `u32` iptables extension provided by the `xt_u32` kernel module to directly filter on a VXLAN packet's VNI field, so that IPSec guarantees can be enforced on encrypted overlay networks without interfering with other overlay networks or other users of VXLAN. An iptables rule designates outgoing VXLAN datagrams with a VNI that corresponds to an encrypted overlay network for IPsec encapsulation. Encrypted overlay networks on affected platforms silently transmit unencrypted data. As a result, `overlay` networks may appear to be functional, passing traffic as expected, but without any of the expected confidentiality or data integrity guarantees. It is possible for an attacker sitting in a trusted position on the network to read all of the application traffic that is moving across the overlay network, resulting in unexpected secrets or user data disclosure. Thus, because many database protocols, internal APIs, etc. are not protected by a second layer of encryption, a user may use Swarm encrypted overlay networks to provide confidentiality, which due to this vulnerability this is no longer guaranteed. Patches are available in Moby releases 23.0.3, and 20.10.24. As Mirantis Container Runtime's 20.10 releases are numbered differently, users of that platform should update to 20.10.16. Some workarounds are available. Close the VXLAN port (by default, UDP port 4789) to outgoing traffic at the Internet boundary in order to prevent unintentionally leaking unencrypted traffic over the Internet, and/or ensure that the `xt_u32` kernel module is available on all nodes of the Swarm cluster.
    Added Reference https://lists.fedoraproject.org/archives/list/[email protected]/message/ZTE4ITXXPIWZEQ4HYQCB6N6GZIMWXDAI/ [No Types Assigned]
  • Initial Analysis by [email protected]

    Apr. 14, 2023

    Action Type Old Value New Value
    Added CVSS V3.1 NIST AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:N/A:N
    Changed Reference Type https://github.com/moby/libnetwork/blob/d9fae4c73daf76c3b0f77e14b45b8bf612ba764d/drivers/overlay/encryption.go#L205-L207 No Types Assigned https://github.com/moby/libnetwork/blob/d9fae4c73daf76c3b0f77e14b45b8bf612ba764d/drivers/overlay/encryption.go#L205-L207 Product
    Changed Reference Type https://github.com/moby/libnetwork/security/advisories/GHSA-gvm4-2qqg-m333 No Types Assigned https://github.com/moby/libnetwork/security/advisories/GHSA-gvm4-2qqg-m333 Vendor Advisory
    Changed Reference Type https://github.com/moby/moby/issues/43382 No Types Assigned https://github.com/moby/moby/issues/43382 Exploit, Issue Tracking, Third Party Advisory
    Changed Reference Type https://github.com/moby/moby/pull/45118 No Types Assigned https://github.com/moby/moby/pull/45118 Issue Tracking, Patch
    Changed Reference Type https://github.com/moby/moby/security/advisories/GHSA-232p-vwff-86mp No Types Assigned https://github.com/moby/moby/security/advisories/GHSA-232p-vwff-86mp Not Applicable
    Changed Reference Type https://github.com/moby/moby/security/advisories/GHSA-33pg-m6jh-5237 No Types Assigned https://github.com/moby/moby/security/advisories/GHSA-33pg-m6jh-5237 Mitigation, Vendor Advisory
    Changed Reference Type https://github.com/moby/moby/security/advisories/GHSA-6wrf-mxfj-pf5p No Types Assigned https://github.com/moby/moby/security/advisories/GHSA-6wrf-mxfj-pf5p Not Applicable
    Changed Reference Type https://github.com/moby/moby/security/advisories/GHSA-vwm3-crmr-xfxw No Types Assigned https://github.com/moby/moby/security/advisories/GHSA-vwm3-crmr-xfxw Vendor Advisory
    Added CWE NIST CWE-755
    Added CWE NIST CWE-311
    Added CPE Configuration OR *cpe:2.3:a:mobyproject:moby:*:*:*:*:*:*:*:* versions from (including) 1.12.0 up to (excluding) 20.10.24 *cpe:2.3:a:mobyproject:moby:*:*:*:*:*:*:*:* versions from (including) 23.0.0 up to (excluding) 23.0.3
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2023-28841 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Exploit Prediction

EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days.

0.32 }} 0.05%

score

0.71240

percentile

CVSS31 - Vulnerability Scoring System
Attack Vector
Attack Complexity
Privileges Required
User Interaction
Scope
Confidentiality
Integrity
Availability