CVE-2023-53133
Apache Linux bpf Infinite Loop Vulnerability
Description
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix an infinite loop error when len is 0 in tcp_bpf_recvmsg_parser() When the buffer length of the recvmsg system call is 0, we got the flollowing soft lockup problem: watchdog: BUG: soft lockup - CPU#3 stuck for 27s! [a.out:6149] CPU: 3 PID: 6149 Comm: a.out Kdump: loaded Not tainted 6.2.0+ #30 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 RIP: 0010:remove_wait_queue+0xb/0xc0 Code: 5e 41 5f c3 cc cc cc cc 0f 1f 80 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 57 <41> 56 41 55 41 54 55 48 89 fd 53 48 89 f3 4c 8d 6b 18 4c 8d 73 20 RSP: 0018:ffff88811b5978b8 EFLAGS: 00000246 RAX: 0000000000000000 RBX: ffff88811a7d3780 RCX: ffffffffb7a4d768 RDX: dffffc0000000000 RSI: ffff88811b597908 RDI: ffff888115408040 RBP: 1ffff110236b2f1b R08: 0000000000000000 R09: ffff88811a7d37e7 R10: ffffed10234fa6fc R11: 0000000000000001 R12: ffff88811179b800 R13: 0000000000000001 R14: ffff88811a7d38a8 R15: ffff88811a7d37e0 FS: 00007f6fb5398740(0000) GS:ffff888237180000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000000 CR3: 000000010b6ba002 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> tcp_msg_wait_data+0x279/0x2f0 tcp_bpf_recvmsg_parser+0x3c6/0x490 inet_recvmsg+0x280/0x290 sock_recvmsg+0xfc/0x120 ____sys_recvmsg+0x160/0x3d0 ___sys_recvmsg+0xf0/0x180 __sys_recvmsg+0xea/0x1a0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc The logic in tcp_bpf_recvmsg_parser is as follows: msg_bytes_ready: copied = sk_msg_recvmsg(sk, psock, msg, len, flags); if (!copied) { wait data; goto msg_bytes_ready; } In this case, "copied" always is 0, the infinite loop occurs. According to the Linux system call man page, 0 should be returned in this case. Therefore, in tcp_bpf_recvmsg_parser(), if the length is 0, directly return. Also modify several other functions with the same problem.
INFO
Published Date :
May 2, 2025, 4:15 p.m.
Last Modified :
May 2, 2025, 4:15 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2023-53133
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2023-53133
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2023-53133
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
May. 02, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix an infinite loop error when len is 0 in tcp_bpf_recvmsg_parser() When the buffer length of the recvmsg system call is 0, we got the flollowing soft lockup problem: watchdog: BUG: soft lockup - CPU#3 stuck for 27s! [a.out:6149] CPU: 3 PID: 6149 Comm: a.out Kdump: loaded Not tainted 6.2.0+ #30 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 RIP: 0010:remove_wait_queue+0xb/0xc0 Code: 5e 41 5f c3 cc cc cc cc 0f 1f 80 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 57 <41> 56 41 55 41 54 55 48 89 fd 53 48 89 f3 4c 8d 6b 18 4c 8d 73 20 RSP: 0018:ffff88811b5978b8 EFLAGS: 00000246 RAX: 0000000000000000 RBX: ffff88811a7d3780 RCX: ffffffffb7a4d768 RDX: dffffc0000000000 RSI: ffff88811b597908 RDI: ffff888115408040 RBP: 1ffff110236b2f1b R08: 0000000000000000 R09: ffff88811a7d37e7 R10: ffffed10234fa6fc R11: 0000000000000001 R12: ffff88811179b800 R13: 0000000000000001 R14: ffff88811a7d38a8 R15: ffff88811a7d37e0 FS: 00007f6fb5398740(0000) GS:ffff888237180000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000000 CR3: 000000010b6ba002 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> tcp_msg_wait_data+0x279/0x2f0 tcp_bpf_recvmsg_parser+0x3c6/0x490 inet_recvmsg+0x280/0x290 sock_recvmsg+0xfc/0x120 ____sys_recvmsg+0x160/0x3d0 ___sys_recvmsg+0xf0/0x180 __sys_recvmsg+0xea/0x1a0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc The logic in tcp_bpf_recvmsg_parser is as follows: msg_bytes_ready: copied = sk_msg_recvmsg(sk, psock, msg, len, flags); if (!copied) { wait data; goto msg_bytes_ready; } In this case, "copied" always is 0, the infinite loop occurs. According to the Linux system call man page, 0 should be returned in this case. Therefore, in tcp_bpf_recvmsg_parser(), if the length is 0, directly return. Also modify several other functions with the same problem. Added Reference https://git.kernel.org/stable/c/4a476285f6d2921c3c9faa494eab83b78f78fc55 Added Reference https://git.kernel.org/stable/c/bf0579989de64d36e177c0611c685dc4a91457a7 Added Reference https://git.kernel.org/stable/c/d900f3d20cc3169ce42ec72acc850e662a4d4db2 Added Reference https://git.kernel.org/stable/c/f45cf3ae3068e70e2c7f3e24a7f8e8aa99511f03
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2023-53133
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2023-53133
weaknesses.