CVE-2023-53428
powercap: arm_scmi: Remove recursion while parsing zones
Description
In the Linux kernel, the following vulnerability has been resolved: powercap: arm_scmi: Remove recursion while parsing zones Powercap zones can be defined as arranged in a hierarchy of trees and when registering a zone with powercap_register_zone(), the kernel powercap subsystem expects this to happen starting from the root zones down to the leaves; on the other side, de-registration by powercap_deregister_zone() must begin from the leaf zones. Available SCMI powercap zones are retrieved dynamically from the platform at probe time and, while any defined hierarchy between the zones is described properly in the zones descriptor, the platform returns the availables zones with no particular well-defined order: as a consequence, the trees possibly composing the hierarchy of zones have to be somehow walked properly to register the retrieved zones from the root. Currently the ARM SCMI Powercap driver walks the zones using a recursive algorithm; this approach, even though correct and tested can lead to kernel stack overflow when processing a returned hierarchy of zones composed by particularly high trees. Avoid possible kernel stack overflow by substituting the recursive approach with an iterative one supported by a dynamically allocated stack-like data structure.
INFO
Published Date :
Sept. 18, 2025, 4:15 p.m.
Last Modified :
Sept. 18, 2025, 4:15 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products
The following products are affected by CVE-2023-53428
vulnerability.
Even if cvefeed.io
is aware of the exact versions of the
products
that
are
affected, the information is not represented in the table below.
No affected product recoded yet
Solution
- Update the Linux kernel to include the fix.
- Use an iterative approach instead of recursion.
- Dynamically allocate stack-like data structures.
- Ensure zones are processed from root to leaf.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2023-53428
.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2023-53428
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2023-53428
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2023-53428
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2023-53428
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Sep. 18, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: powercap: arm_scmi: Remove recursion while parsing zones Powercap zones can be defined as arranged in a hierarchy of trees and when registering a zone with powercap_register_zone(), the kernel powercap subsystem expects this to happen starting from the root zones down to the leaves; on the other side, de-registration by powercap_deregister_zone() must begin from the leaf zones. Available SCMI powercap zones are retrieved dynamically from the platform at probe time and, while any defined hierarchy between the zones is described properly in the zones descriptor, the platform returns the availables zones with no particular well-defined order: as a consequence, the trees possibly composing the hierarchy of zones have to be somehow walked properly to register the retrieved zones from the root. Currently the ARM SCMI Powercap driver walks the zones using a recursive algorithm; this approach, even though correct and tested can lead to kernel stack overflow when processing a returned hierarchy of zones composed by particularly high trees. Avoid possible kernel stack overflow by substituting the recursive approach with an iterative one supported by a dynamically allocated stack-like data structure. Added Reference https://git.kernel.org/stable/c/3e767d6850f867cc33ac16ca097350a1d2417982 Added Reference https://git.kernel.org/stable/c/8022b64fb7daa6135d9f7b0e2f7b5b8e9e5179c9 Added Reference https://git.kernel.org/stable/c/b427c23cebc5c926516f20304bf1acc05a33d147