CVE-2023-53580
USB: Gadget: core: Help prevent panic during UVC unconfigure
Description
In the Linux kernel, the following vulnerability has been resolved: USB: Gadget: core: Help prevent panic during UVC unconfigure Avichal Rakesh reported a kernel panic that occurred when the UVC gadget driver was removed from a gadget's configuration. The panic involves a somewhat complicated interaction between the kernel driver and a userspace component (as described in the Link tag below), but the analysis did make one thing clear: The Gadget core should accomodate gadget drivers calling usb_gadget_deactivate() as part of their unbind procedure. Currently this doesn't work. gadget_unbind_driver() calls driver->unbind() while holding the udc->connect_lock mutex, and usb_gadget_deactivate() attempts to acquire that mutex, which will result in a deadlock. The simple fix is for gadget_unbind_driver() to release the mutex when invoking the ->unbind() callback. There is no particular reason for it to be holding the mutex at that time, and the mutex isn't held while the ->bind() callback is invoked. So we'll drop the mutex before performing the unbind callback and reacquire it afterward. We'll also add a couple of comments to usb_gadget_activate() and usb_gadget_deactivate(). Because they run in process context they must not be called from a gadget driver's ->disconnect() callback, which (according to the kerneldoc for struct usb_gadget_driver in include/linux/usb/gadget.h) may run in interrupt context. This may help prevent similar bugs from arising in the future.
INFO
Published Date :
Oct. 4, 2025, 4:15 p.m.
Last Modified :
Oct. 6, 2025, 2:56 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Solution
- Release mutex before calling unbind callback.
- Reacquire mutex after unbind callback.
- Do not call from disconnect callback.
- Add comments to activate/deactivate functions.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2023-53580
.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2023-53580
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2023-53580
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2023-53580
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2023-53580
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Oct. 04, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: USB: Gadget: core: Help prevent panic during UVC unconfigure Avichal Rakesh reported a kernel panic that occurred when the UVC gadget driver was removed from a gadget's configuration. The panic involves a somewhat complicated interaction between the kernel driver and a userspace component (as described in the Link tag below), but the analysis did make one thing clear: The Gadget core should accomodate gadget drivers calling usb_gadget_deactivate() as part of their unbind procedure. Currently this doesn't work. gadget_unbind_driver() calls driver->unbind() while holding the udc->connect_lock mutex, and usb_gadget_deactivate() attempts to acquire that mutex, which will result in a deadlock. The simple fix is for gadget_unbind_driver() to release the mutex when invoking the ->unbind() callback. There is no particular reason for it to be holding the mutex at that time, and the mutex isn't held while the ->bind() callback is invoked. So we'll drop the mutex before performing the unbind callback and reacquire it afterward. We'll also add a couple of comments to usb_gadget_activate() and usb_gadget_deactivate(). Because they run in process context they must not be called from a gadget driver's ->disconnect() callback, which (according to the kerneldoc for struct usb_gadget_driver in include/linux/usb/gadget.h) may run in interrupt context. This may help prevent similar bugs from arising in the future. Added Reference https://git.kernel.org/stable/c/65dadb2beeb7360232b09ebc4585b54475dfee06 Added Reference https://git.kernel.org/stable/c/8c1edc00db65f6d4408b3d1cd845e8da3b9e0ca4 Added Reference https://git.kernel.org/stable/c/bed19d95fcb9c98dfaa9585922b39a2dfba7898d