CVE-2023-53700
media: max9286: Fix memleak in max9286_v4l2_register()
Description
In the Linux kernel, the following vulnerability has been resolved: media: max9286: Fix memleak in max9286_v4l2_register() There is a kmemleak when testing the media/i2c/max9286.c with bpf mock device: kmemleak: 5 new suspected memory leaks (see /sys/kernel/debug/kmemleak) unreferenced object 0xffff88810defc400 (size 256): comm "python3", pid 278, jiffies 4294737563 (age 31.978s) hex dump (first 32 bytes): 28 06 a7 0a 81 88 ff ff 00 fe 22 12 81 88 ff ff (........."..... 10 c4 ef 0d 81 88 ff ff 10 c4 ef 0d 81 88 ff ff ................ backtrace: [<00000000191de6a7>] __kmalloc_node+0x44/0x1b0 [<000000002f4912b7>] kvmalloc_node+0x34/0x180 [<0000000057dc4cae>] v4l2_ctrl_new+0x325/0x10f0 [videodev] [<0000000026030272>] v4l2_ctrl_new_std+0x16f/0x210 [videodev] [<00000000f0d9ea2f>] max9286_probe+0x76e/0xbff [max9286] [<00000000ea8f6455>] i2c_device_probe+0x28d/0x680 [<0000000087529af3>] really_probe+0x17c/0x3f0 [<00000000b08be526>] __driver_probe_device+0xe3/0x170 [<000000004382edea>] driver_probe_device+0x49/0x120 [<000000007bde528a>] __device_attach_driver+0xf7/0x150 [<000000009f9c6ab4>] bus_for_each_drv+0x114/0x180 [<00000000c8aaf588>] __device_attach+0x1e5/0x2d0 [<0000000041cc06b9>] bus_probe_device+0x126/0x140 [<000000002309860d>] device_add+0x810/0x1130 [<000000002827bf98>] i2c_new_client_device+0x359/0x4f0 [<00000000593bdc85>] of_i2c_register_device+0xf1/0x110 max9286_v4l2_register() calls v4l2_ctrl_new_std(), but won't free the created v412_ctrl when fwnode_graph_get_endpoint_by_id() failed, which causes the memleak. Call v4l2_ctrl_handler_free() to free the v412_ctrl.
INFO
Published Date :
Oct. 22, 2025, 2:15 p.m.
Last Modified :
Oct. 22, 2025, 9:12 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Solution
- Call v4l2_ctrl_handler_free() to free V4L2 controls.
- Ensure all allocated controls are freed on error paths.
- Apply the patch to the Linux kernel source code.
- Recompile and deploy the updated kernel.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2023-53700.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2023-53700 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2023-53700
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2023-53700 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2023-53700 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Oct. 22, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: media: max9286: Fix memleak in max9286_v4l2_register() There is a kmemleak when testing the media/i2c/max9286.c with bpf mock device: kmemleak: 5 new suspected memory leaks (see /sys/kernel/debug/kmemleak) unreferenced object 0xffff88810defc400 (size 256): comm "python3", pid 278, jiffies 4294737563 (age 31.978s) hex dump (first 32 bytes): 28 06 a7 0a 81 88 ff ff 00 fe 22 12 81 88 ff ff (........."..... 10 c4 ef 0d 81 88 ff ff 10 c4 ef 0d 81 88 ff ff ................ backtrace: [<00000000191de6a7>] __kmalloc_node+0x44/0x1b0 [<000000002f4912b7>] kvmalloc_node+0x34/0x180 [<0000000057dc4cae>] v4l2_ctrl_new+0x325/0x10f0 [videodev] [<0000000026030272>] v4l2_ctrl_new_std+0x16f/0x210 [videodev] [<00000000f0d9ea2f>] max9286_probe+0x76e/0xbff [max9286] [<00000000ea8f6455>] i2c_device_probe+0x28d/0x680 [<0000000087529af3>] really_probe+0x17c/0x3f0 [<00000000b08be526>] __driver_probe_device+0xe3/0x170 [<000000004382edea>] driver_probe_device+0x49/0x120 [<000000007bde528a>] __device_attach_driver+0xf7/0x150 [<000000009f9c6ab4>] bus_for_each_drv+0x114/0x180 [<00000000c8aaf588>] __device_attach+0x1e5/0x2d0 [<0000000041cc06b9>] bus_probe_device+0x126/0x140 [<000000002309860d>] device_add+0x810/0x1130 [<000000002827bf98>] i2c_new_client_device+0x359/0x4f0 [<00000000593bdc85>] of_i2c_register_device+0xf1/0x110 max9286_v4l2_register() calls v4l2_ctrl_new_std(), but won't free the created v412_ctrl when fwnode_graph_get_endpoint_by_id() failed, which causes the memleak. Call v4l2_ctrl_handler_free() to free the v412_ctrl. Added Reference https://git.kernel.org/stable/c/505ff3a0c5951684c3a43094ca4c1a74683d5681 Added Reference https://git.kernel.org/stable/c/5897fe3ebe8252993579e1bee715ebfe5504e052 Added Reference https://git.kernel.org/stable/c/5e31213fa017c20ccc989033a5f4a626473aa2ca Added Reference https://git.kernel.org/stable/c/724039e013b34f46344abdbf8c74e6a65a828327 Added Reference https://git.kernel.org/stable/c/8636c5fc7658c7c6299fb8b352d24ea4b9ba99e2