CVE-2023-53742
kcsan: Avoid READ_ONCE() in read_instrumented_memory()
Description
In the Linux kernel, the following vulnerability has been resolved: kcsan: Avoid READ_ONCE() in read_instrumented_memory() Haibo Li reported: | Unable to handle kernel paging request at virtual address | ffffff802a0d8d7171 | Mem abort info:o: | ESR = 0x9600002121 | EC = 0x25: DABT (current EL), IL = 32 bitsts | SET = 0, FnV = 0 0 | EA = 0, S1PTW = 0 0 | FSC = 0x21: alignment fault | Data abort info:o: | ISV = 0, ISS = 0x0000002121 | CM = 0, WnR = 0 0 | swapper pgtable: 4k pages, 39-bit VAs, pgdp=000000002835200000 | [ffffff802a0d8d71] pgd=180000005fbf9003, p4d=180000005fbf9003, | pud=180000005fbf9003, pmd=180000005fbe8003, pte=006800002a0d8707 | Internal error: Oops: 96000021 [#1] PREEMPT SMP | Modules linked in: | CPU: 2 PID: 45 Comm: kworker/u8:2 Not tainted | 5.15.78-android13-8-g63561175bbda-dirty #1 | ... | pc : kcsan_setup_watchpoint+0x26c/0x6bc | lr : kcsan_setup_watchpoint+0x88/0x6bc | sp : ffffffc00ab4b7f0 | x29: ffffffc00ab4b800 x28: ffffff80294fe588 x27: 0000000000000001 | x26: 0000000000000019 x25: 0000000000000001 x24: ffffff80294fdb80 | x23: 0000000000000000 x22: ffffffc00a70fb68 x21: ffffff802a0d8d71 | x20: 0000000000000002 x19: 0000000000000000 x18: ffffffc00a9bd060 | x17: 0000000000000001 x16: 0000000000000000 x15: ffffffc00a59f000 | x14: 0000000000000001 x13: 0000000000000000 x12: ffffffc00a70faa0 | x11: 00000000aaaaaaab x10: 0000000000000054 x9 : ffffffc00839adf8 | x8 : ffffffc009b4cf00 x7 : 0000000000000000 x6 : 0000000000000007 | x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffffffc00a70fb70 | x2 : 0005ff802a0d8d71 x1 : 0000000000000000 x0 : 0000000000000000 | Call trace: | kcsan_setup_watchpoint+0x26c/0x6bc | __tsan_read2+0x1f0/0x234 | inflate_fast+0x498/0x750 | zlib_inflate+0x1304/0x2384 | __gunzip+0x3a0/0x45c | gunzip+0x20/0x30 | unpack_to_rootfs+0x2a8/0x3fc | do_populate_rootfs+0xe8/0x11c | async_run_entry_fn+0x58/0x1bc | process_one_work+0x3ec/0x738 | worker_thread+0x4c4/0x838 | kthread+0x20c/0x258 | ret_from_fork+0x10/0x20 | Code: b8bfc2a8 2a0803f7 14000007 d503249f (78bfc2a8) ) | ---[ end trace 613a943cb0a572b6 ]----- The reason for this is that on certain arm64 configuration since e35123d83ee3 ("arm64: lto: Strengthen READ_ONCE() to acquire when CONFIG_LTO=y"), READ_ONCE() may be promoted to a full atomic acquire instruction which cannot be used on unaligned addresses. Fix it by avoiding READ_ONCE() in read_instrumented_memory(), and simply forcing the compiler to do the required access by casting to the appropriate volatile type. In terms of generated code this currently only affects architectures that do not use the default READ_ONCE() implementation. The only downside is that we are not guaranteed atomicity of the access itself, although on most architectures a plain load up to machine word size should still be atomic (a fact the default READ_ONCE() still relies on itself).
INFO
Published Date :
Dec. 8, 2025, 2:15 a.m.
Last Modified :
Dec. 8, 2025, 2:15 a.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Solution
- Apply the latest Linux kernel updates.
- Ensure the system uses a patched kernel version.
- Rebuild and deploy the kernel if necessary.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2023-53742.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2023-53742 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2023-53742
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2023-53742 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2023-53742 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Dec. 08, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: kcsan: Avoid READ_ONCE() in read_instrumented_memory() Haibo Li reported: | Unable to handle kernel paging request at virtual address | ffffff802a0d8d7171 | Mem abort info:o: | ESR = 0x9600002121 | EC = 0x25: DABT (current EL), IL = 32 bitsts | SET = 0, FnV = 0 0 | EA = 0, S1PTW = 0 0 | FSC = 0x21: alignment fault | Data abort info:o: | ISV = 0, ISS = 0x0000002121 | CM = 0, WnR = 0 0 | swapper pgtable: 4k pages, 39-bit VAs, pgdp=000000002835200000 | [ffffff802a0d8d71] pgd=180000005fbf9003, p4d=180000005fbf9003, | pud=180000005fbf9003, pmd=180000005fbe8003, pte=006800002a0d8707 | Internal error: Oops: 96000021 [#1] PREEMPT SMP | Modules linked in: | CPU: 2 PID: 45 Comm: kworker/u8:2 Not tainted | 5.15.78-android13-8-g63561175bbda-dirty #1 | ... | pc : kcsan_setup_watchpoint+0x26c/0x6bc | lr : kcsan_setup_watchpoint+0x88/0x6bc | sp : ffffffc00ab4b7f0 | x29: ffffffc00ab4b800 x28: ffffff80294fe588 x27: 0000000000000001 | x26: 0000000000000019 x25: 0000000000000001 x24: ffffff80294fdb80 | x23: 0000000000000000 x22: ffffffc00a70fb68 x21: ffffff802a0d8d71 | x20: 0000000000000002 x19: 0000000000000000 x18: ffffffc00a9bd060 | x17: 0000000000000001 x16: 0000000000000000 x15: ffffffc00a59f000 | x14: 0000000000000001 x13: 0000000000000000 x12: ffffffc00a70faa0 | x11: 00000000aaaaaaab x10: 0000000000000054 x9 : ffffffc00839adf8 | x8 : ffffffc009b4cf00 x7 : 0000000000000000 x6 : 0000000000000007 | x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffffffc00a70fb70 | x2 : 0005ff802a0d8d71 x1 : 0000000000000000 x0 : 0000000000000000 | Call trace: | kcsan_setup_watchpoint+0x26c/0x6bc | __tsan_read2+0x1f0/0x234 | inflate_fast+0x498/0x750 | zlib_inflate+0x1304/0x2384 | __gunzip+0x3a0/0x45c | gunzip+0x20/0x30 | unpack_to_rootfs+0x2a8/0x3fc | do_populate_rootfs+0xe8/0x11c | async_run_entry_fn+0x58/0x1bc | process_one_work+0x3ec/0x738 | worker_thread+0x4c4/0x838 | kthread+0x20c/0x258 | ret_from_fork+0x10/0x20 | Code: b8bfc2a8 2a0803f7 14000007 d503249f (78bfc2a8) ) | ---[ end trace 613a943cb0a572b6 ]----- The reason for this is that on certain arm64 configuration since e35123d83ee3 ("arm64: lto: Strengthen READ_ONCE() to acquire when CONFIG_LTO=y"), READ_ONCE() may be promoted to a full atomic acquire instruction which cannot be used on unaligned addresses. Fix it by avoiding READ_ONCE() in read_instrumented_memory(), and simply forcing the compiler to do the required access by casting to the appropriate volatile type. In terms of generated code this currently only affects architectures that do not use the default READ_ONCE() implementation. The only downside is that we are not guaranteed atomicity of the access itself, although on most architectures a plain load up to machine word size should still be atomic (a fact the default READ_ONCE() still relies on itself). Added Reference https://git.kernel.org/stable/c/706ae665747b629bcf87a2d7e6438602f904b8d5 Added Reference https://git.kernel.org/stable/c/75c03a8cfc731519236f08c34c7e029ae153a613 Added Reference https://git.kernel.org/stable/c/8dec88070d964bfeb4198f34cb5956d89dd1f557 Added Reference https://git.kernel.org/stable/c/f8f2297355513e5e0631e604ef9d7e449c7dcd00