0.0
NA
CVE-2024-26846
"Linux nvme-fc Uninitialized Work Queue Denial of Service"
Description

In the Linux kernel, the following vulnerability has been resolved: nvme-fc: do not wait in vain when unloading module The module exit path has race between deleting all controllers and freeing 'left over IDs'. To prevent double free a synchronization between nvme_delete_ctrl and ida_destroy has been added by the initial commit. There is some logic around trying to prevent from hanging forever in wait_for_completion, though it does not handling all cases. E.g. blktests is able to reproduce the situation where the module unload hangs forever. If we completely rely on the cleanup code executed from the nvme_delete_ctrl path, all IDs will be freed eventually. This makes calling ida_destroy unnecessary. We only have to ensure that all nvme_delete_ctrl code has been executed before we leave nvme_fc_exit_module. This is done by flushing the nvme_delete_wq workqueue. While at it, remove the unused nvme_fc_wq workqueue too.

INFO

Published Date :

April 17, 2024, 10:15 a.m.

Last Modified :

June 25, 2024, 10:15 p.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

Exploitability Score :

Affected Products

The following products are affected by CVE-2024-26846 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2024-26846 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2024-26846 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Jun. 25, 2024

    Action Type Old Value New Value
    Added Reference kernel.org https://lists.debian.org/debian-lts-announce/2024/06/msg00017.html [No types assigned]
  • CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    May. 29, 2024

    Action Type Old Value New Value
  • CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    May. 14, 2024

    Action Type Old Value New Value
  • CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Apr. 17, 2024

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: nvme-fc: do not wait in vain when unloading module The module exit path has race between deleting all controllers and freeing 'left over IDs'. To prevent double free a synchronization between nvme_delete_ctrl and ida_destroy has been added by the initial commit. There is some logic around trying to prevent from hanging forever in wait_for_completion, though it does not handling all cases. E.g. blktests is able to reproduce the situation where the module unload hangs forever. If we completely rely on the cleanup code executed from the nvme_delete_ctrl path, all IDs will be freed eventually. This makes calling ida_destroy unnecessary. We only have to ensure that all nvme_delete_ctrl code has been executed before we leave nvme_fc_exit_module. This is done by flushing the nvme_delete_wq workqueue. While at it, remove the unused nvme_fc_wq workqueue too.
    Added Reference kernel.org https://git.kernel.org/stable/c/4f2c95015ec2a1899161be6c0bdaecedd5a7bfb2 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/0bf567d6d9ffe09e059bbdfb4d07143cef42c75c [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/085195aa90a924c79e35569bcdad860d764a8e17 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/baa6b7eb8c66486bd64608adc63fe03b30d3c0b9 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/c0882c366418bf9c19e1ba7f270fe377a9bf5d67 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/70fbfc47a392b98e5f8dba70c6efc6839205c982 [No types assigned]
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2024-26846 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2024-26846 weaknesses.

NONE - Vulnerability Scoring System