0.0
NA
CVE-2024-26947
"Linux ARM Device Driver Memory Map Allocation Vulnerability"
Description

In the Linux kernel, the following vulnerability has been resolved: ARM: 9359/1: flush: check if the folio is reserved for no-mapping addresses Since commit a4d5613c4dc6 ("arm: extend pfn_valid to take into account freed memory map alignment") changes the semantics of pfn_valid() to check presence of the memory map for a PFN. A valid page for an address which is reserved but not mapped by the kernel[1], the system crashed during some uio test with the following memory layout: node 0: [mem 0x00000000c0a00000-0x00000000cc8fffff] node 0: [mem 0x00000000d0000000-0x00000000da1fffff] the uio layout is:0xc0900000, 0x100000 the crash backtrace like: Unable to handle kernel paging request at virtual address bff00000 [...] CPU: 1 PID: 465 Comm: startapp.bin Tainted: G O 5.10.0 #1 Hardware name: Generic DT based system PC is at b15_flush_kern_dcache_area+0x24/0x3c LR is at __sync_icache_dcache+0x6c/0x98 [...] (b15_flush_kern_dcache_area) from (__sync_icache_dcache+0x6c/0x98) (__sync_icache_dcache) from (set_pte_at+0x28/0x54) (set_pte_at) from (remap_pfn_range+0x1a0/0x274) (remap_pfn_range) from (uio_mmap+0x184/0x1b8 [uio]) (uio_mmap [uio]) from (__mmap_region+0x264/0x5f4) (__mmap_region) from (__do_mmap_mm+0x3ec/0x440) (__do_mmap_mm) from (do_mmap+0x50/0x58) (do_mmap) from (vm_mmap_pgoff+0xfc/0x188) (vm_mmap_pgoff) from (ksys_mmap_pgoff+0xac/0xc4) (ksys_mmap_pgoff) from (ret_fast_syscall+0x0/0x5c) Code: e0801001 e2423001 e1c00003 f57ff04f (ee070f3e) ---[ end trace 09cf0734c3805d52 ]--- Kernel panic - not syncing: Fatal exception So check if PG_reserved was set to solve this issue. [1]: https://lore.kernel.org/lkml/[email protected]/

INFO

Published Date :

May 1, 2024, 6:15 a.m.

Last Modified :

May 13, 2024, 8:15 a.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

Exploitability Score :

Affected Products

The following products are affected by CVE-2024-26947 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel
References to Advisories, Solutions, and Tools

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2024-26947 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2024-26947 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    May. 29, 2024

    Action Type Old Value New Value
  • CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    May. 14, 2024

    Action Type Old Value New Value
  • CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    May. 13, 2024

    Action Type Old Value New Value
    Changed Description In the Linux kernel, the following vulnerability has been resolved: ARM: 9359/1: flush: check if the folio is reserved for no-mapping addresses Since commit a4d5613c4dc6 ("arm: extend pfn_valid to take into account freed memory map alignment") changes the semantics of pfn_valid() to check presence of the memory map for a PFN. A valid page for an address which is reserved but not mapped by the kernel[1], the system crashed during some uio test with the following memory layout: node 0: [mem 0x00000000c0a00000-0x00000000cc8fffff] node 0: [mem 0x00000000d0000000-0x00000000da1fffff] the uio layout is?0xc0900000, 0x100000 the crash backtrace like: Unable to handle kernel paging request at virtual address bff00000 [...] CPU: 1 PID: 465 Comm: startapp.bin Tainted: G O 5.10.0 #1 Hardware name: Generic DT based system PC is at b15_flush_kern_dcache_area+0x24/0x3c LR is at __sync_icache_dcache+0x6c/0x98 [...] (b15_flush_kern_dcache_area) from (__sync_icache_dcache+0x6c/0x98) (__sync_icache_dcache) from (set_pte_at+0x28/0x54) (set_pte_at) from (remap_pfn_range+0x1a0/0x274) (remap_pfn_range) from (uio_mmap+0x184/0x1b8 [uio]) (uio_mmap [uio]) from (__mmap_region+0x264/0x5f4) (__mmap_region) from (__do_mmap_mm+0x3ec/0x440) (__do_mmap_mm) from (do_mmap+0x50/0x58) (do_mmap) from (vm_mmap_pgoff+0xfc/0x188) (vm_mmap_pgoff) from (ksys_mmap_pgoff+0xac/0xc4) (ksys_mmap_pgoff) from (ret_fast_syscall+0x0/0x5c) Code: e0801001 e2423001 e1c00003 f57ff04f (ee070f3e) ---[ end trace 09cf0734c3805d52 ]--- Kernel panic - not syncing: Fatal exception So check if PG_reserved was set to solve this issue. [1]: https://lore.kernel.org/lkml/[email protected]/ In the Linux kernel, the following vulnerability has been resolved: ARM: 9359/1: flush: check if the folio is reserved for no-mapping addresses Since commit a4d5613c4dc6 ("arm: extend pfn_valid to take into account freed memory map alignment") changes the semantics of pfn_valid() to check presence of the memory map for a PFN. A valid page for an address which is reserved but not mapped by the kernel[1], the system crashed during some uio test with the following memory layout: node 0: [mem 0x00000000c0a00000-0x00000000cc8fffff] node 0: [mem 0x00000000d0000000-0x00000000da1fffff] the uio layout is:0xc0900000, 0x100000 the crash backtrace like: Unable to handle kernel paging request at virtual address bff00000 [...] CPU: 1 PID: 465 Comm: startapp.bin Tainted: G O 5.10.0 #1 Hardware name: Generic DT based system PC is at b15_flush_kern_dcache_area+0x24/0x3c LR is at __sync_icache_dcache+0x6c/0x98 [...] (b15_flush_kern_dcache_area) from (__sync_icache_dcache+0x6c/0x98) (__sync_icache_dcache) from (set_pte_at+0x28/0x54) (set_pte_at) from (remap_pfn_range+0x1a0/0x274) (remap_pfn_range) from (uio_mmap+0x184/0x1b8 [uio]) (uio_mmap [uio]) from (__mmap_region+0x264/0x5f4) (__mmap_region) from (__do_mmap_mm+0x3ec/0x440) (__do_mmap_mm) from (do_mmap+0x50/0x58) (do_mmap) from (vm_mmap_pgoff+0xfc/0x188) (vm_mmap_pgoff) from (ksys_mmap_pgoff+0xac/0xc4) (ksys_mmap_pgoff) from (ret_fast_syscall+0x0/0x5c) Code: e0801001 e2423001 e1c00003 f57ff04f (ee070f3e) ---[ end trace 09cf0734c3805d52 ]--- Kernel panic - not syncing: Fatal exception So check if PG_reserved was set to solve this issue. [1]: https://lore.kernel.org/lkml/[email protected]/
  • CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    May. 01, 2024

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: ARM: 9359/1: flush: check if the folio is reserved for no-mapping addresses Since commit a4d5613c4dc6 ("arm: extend pfn_valid to take into account freed memory map alignment") changes the semantics of pfn_valid() to check presence of the memory map for a PFN. A valid page for an address which is reserved but not mapped by the kernel[1], the system crashed during some uio test with the following memory layout: node 0: [mem 0x00000000c0a00000-0x00000000cc8fffff] node 0: [mem 0x00000000d0000000-0x00000000da1fffff] the uio layout is:0xc0900000, 0x100000 the crash backtrace like: Unable to handle kernel paging request at virtual address bff00000 [...] CPU: 1 PID: 465 Comm: startapp.bin Tainted: G O 5.10.0 #1 Hardware name: Generic DT based system PC is at b15_flush_kern_dcache_area+0x24/0x3c LR is at __sync_icache_dcache+0x6c/0x98 [...] (b15_flush_kern_dcache_area) from (__sync_icache_dcache+0x6c/0x98) (__sync_icache_dcache) from (set_pte_at+0x28/0x54) (set_pte_at) from (remap_pfn_range+0x1a0/0x274) (remap_pfn_range) from (uio_mmap+0x184/0x1b8 [uio]) (uio_mmap [uio]) from (__mmap_region+0x264/0x5f4) (__mmap_region) from (__do_mmap_mm+0x3ec/0x440) (__do_mmap_mm) from (do_mmap+0x50/0x58) (do_mmap) from (vm_mmap_pgoff+0xfc/0x188) (vm_mmap_pgoff) from (ksys_mmap_pgoff+0xac/0xc4) (ksys_mmap_pgoff) from (ret_fast_syscall+0x0/0x5c) Code: e0801001 e2423001 e1c00003 f57ff04f (ee070f3e) ---[ end trace 09cf0734c3805d52 ]--- Kernel panic - not syncing: Fatal exception So check if PG_reserved was set to solve this issue. [1]: https://lore.kernel.org/lkml/[email protected]/
    Added Reference kernel.org https://git.kernel.org/stable/c/0c027c2bad7f5111c51a358b5d392e1a695dabff [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/9f7ddc222cae8254e93d5c169a8ae11a49d912a7 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/fb3a122a978626b33de3367ee1762da934c0f512 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/0c66c6f4e21cb22220cbd8821c5c73fc157d20dc [No types assigned]
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2024-26947 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2024-26947 weaknesses.

NONE - Vulnerability Scoring System