CVE-2024-35877
Linux kernel x86 PAT Handling Vulnerability
Description
In the Linux kernel, the following vulnerability has been resolved: x86/mm/pat: fix VM_PAT handling in COW mappings PAT handling won't do the right thing in COW mappings: the first PTE (or, in fact, all PTEs) can be replaced during write faults to point at anon folios. Reliably recovering the correct PFN and cachemode using follow_phys() from PTEs will not work in COW mappings. Using follow_phys(), we might just get the address+protection of the anon folio (which is very wrong), or fail on swap/nonswap entries, failing follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and track_pfn_copy(), not properly calling free_pfn_range(). In free_pfn_range(), we either wouldn't call memtype_free() or would call it with the wrong range, possibly leaking memory. To fix that, let's update follow_phys() to refuse returning anon folios, and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings if we run into that. We will now properly handle untrack_pfn() with COW mappings, where we don't need the cachemode. We'll have to fail fork()->track_pfn_copy() if the first page was replaced by an anon folio, though: we'd have to store the cachemode in the VMA to make this work, likely growing the VMA size. For now, lets keep it simple and let track_pfn_copy() just fail in that case: it would have failed in the past with swap/nonswap entries already, and it would have done the wrong thing with anon folios. Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn(): <--- C reproducer ---> #include <stdio.h> #include <sys/mman.h> #include <unistd.h> #include <liburing.h> int main(void) { struct io_uring_params p = {}; int ring_fd; size_t size; char *map; ring_fd = io_uring_setup(1, &p); if (ring_fd < 0) { perror("io_uring_setup"); return 1; } size = p.sq_off.array + p.sq_entries * sizeof(unsigned); /* Map the submission queue ring MAP_PRIVATE */ map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, ring_fd, IORING_OFF_SQ_RING); if (map == MAP_FAILED) { perror("mmap"); return 1; } /* We have at least one page. Let's COW it. */ *map = 0; pause(); return 0; } <--- C reproducer ---> On a system with 16 GiB RAM and swap configured: # ./iouring & # memhog 16G # killall iouring [ 301.552930] ------------[ cut here ]------------ [ 301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100 [ 301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g [ 301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1 [ 301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4 [ 301.559569] RIP: 0010:untrack_pfn+0xf4/0x100 [ 301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000 [ 301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282 [ 301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047 [ 301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200 [ 301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000 [ 301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000 [ 301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000 [ 301.564186] FS: 0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000 [ 301.564773] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0 [ 301.565725] PKRU: 55555554 [ 301.565944] Call Trace: [ 301.566148] <TASK> [ 301.566325] ? untrack_pfn+0xf4/0x100 [ 301.566618] ? __warn+0x81/0x130 [ 301.566876] ? untrack_pfn+0xf4/0x100 [ 3 ---truncated---
INFO
Published Date :
May 19, 2024, 9:15 a.m.
Last Modified :
Jan. 16, 2025, 10:15 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
3.6
Exploitability Score :
1.8
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2024-35877
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2024-35877
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2024-35877
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
CVE Modified by 134c704f-9b21-4f2e-91b3-4a467353bcc0
Jan. 16, 2025
Action Type Old Value New Value Removed CVSS V3.1 AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H -
CVE Modified by af854a3a-2127-422b-91ae-364da2661108
Nov. 21, 2024
Action Type Old Value New Value Added Reference https://git.kernel.org/stable/c/04c35ab3bdae7fefbd7c7a7355f29fa03a035221 Added Reference https://git.kernel.org/stable/c/09e6bb53217bf388a0d2fd7fb21e74ab9dffc173 Added Reference https://git.kernel.org/stable/c/1341e4b32e1fb1b0acd002ccd56f07bd32f2abc6 Added Reference https://git.kernel.org/stable/c/51b7841f3fe84606ec0bd8da859d22e05e5419ec Added Reference https://git.kernel.org/stable/c/7cfee26d1950250b14c5cb0a37b142f3fcc6396a Added Reference https://git.kernel.org/stable/c/97e93367e82752e475a33839a80b33bdbef1209f Added Reference https://git.kernel.org/stable/c/c2b2430b48f3c9eaccd2c3d2ad75bb540d4952f4 Added Reference https://git.kernel.org/stable/c/f18681daaec9665a15c5e7e0f591aad5d0ac622b Added Reference https://lists.debian.org/debian-lts-announce/2024/06/msg00017.html Added Reference https://lists.debian.org/debian-lts-announce/2024/06/msg00020.html -
CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Nov. 05, 2024
Action Type Old Value New Value Removed Reference kernel.org https://lists.debian.org/debian-lts-announce/2024/06/msg00017.html Removed Reference kernel.org https://lists.debian.org/debian-lts-announce/2024/06/msg00020.html -
CVE Modified by 134c704f-9b21-4f2e-91b3-4a467353bcc0
Oct. 31, 2024
Action Type Old Value New Value Added CVSS V3.1 CISA-ADP AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H -
CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jun. 27, 2024
Action Type Old Value New Value Added Reference kernel.org https://lists.debian.org/debian-lts-announce/2024/06/msg00020.html [No types assigned] -
CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jun. 25, 2024
Action Type Old Value New Value Added Reference kernel.org https://lists.debian.org/debian-lts-announce/2024/06/msg00017.html [No types assigned] -
CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
May. 29, 2024
Action Type Old Value New Value -
CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
May. 19, 2024
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: x86/mm/pat: fix VM_PAT handling in COW mappings PAT handling won't do the right thing in COW mappings: the first PTE (or, in fact, all PTEs) can be replaced during write faults to point at anon folios. Reliably recovering the correct PFN and cachemode using follow_phys() from PTEs will not work in COW mappings. Using follow_phys(), we might just get the address+protection of the anon folio (which is very wrong), or fail on swap/nonswap entries, failing follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and track_pfn_copy(), not properly calling free_pfn_range(). In free_pfn_range(), we either wouldn't call memtype_free() or would call it with the wrong range, possibly leaking memory. To fix that, let's update follow_phys() to refuse returning anon folios, and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings if we run into that. We will now properly handle untrack_pfn() with COW mappings, where we don't need the cachemode. We'll have to fail fork()->track_pfn_copy() if the first page was replaced by an anon folio, though: we'd have to store the cachemode in the VMA to make this work, likely growing the VMA size. For now, lets keep it simple and let track_pfn_copy() just fail in that case: it would have failed in the past with swap/nonswap entries already, and it would have done the wrong thing with anon folios. Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn(): <--- C reproducer ---> #include <stdio.h> #include <sys/mman.h> #include <unistd.h> #include <liburing.h> int main(void) { struct io_uring_params p = {}; int ring_fd; size_t size; char *map; ring_fd = io_uring_setup(1, &p); if (ring_fd < 0) { perror("io_uring_setup"); return 1; } size = p.sq_off.array + p.sq_entries * sizeof(unsigned); /* Map the submission queue ring MAP_PRIVATE */ map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, ring_fd, IORING_OFF_SQ_RING); if (map == MAP_FAILED) { perror("mmap"); return 1; } /* We have at least one page. Let's COW it. */ *map = 0; pause(); return 0; } <--- C reproducer ---> On a system with 16 GiB RAM and swap configured: # ./iouring & # memhog 16G # killall iouring [ 301.552930] ------------[ cut here ]------------ [ 301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100 [ 301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g [ 301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1 [ 301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4 [ 301.559569] RIP: 0010:untrack_pfn+0xf4/0x100 [ 301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000 [ 301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282 [ 301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047 [ 301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200 [ 301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000 [ 301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000 [ 301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000 [ 301.564186] FS: 0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000 [ 301.564773] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0 [ 301.565725] PKRU: 55555554 [ 301.565944] Call Trace: [ 301.566148] <TASK> [ 301.566325] ? untrack_pfn+0xf4/0x100 [ 301.566618] ? __warn+0x81/0x130 [ 301.566876] ? untrack_pfn+0xf4/0x100 [ 3 ---truncated--- Added Reference kernel.org https://git.kernel.org/stable/c/f18681daaec9665a15c5e7e0f591aad5d0ac622b [No types assigned] Added Reference kernel.org https://git.kernel.org/stable/c/09e6bb53217bf388a0d2fd7fb21e74ab9dffc173 [No types assigned] Added Reference kernel.org https://git.kernel.org/stable/c/c2b2430b48f3c9eaccd2c3d2ad75bb540d4952f4 [No types assigned] Added Reference kernel.org https://git.kernel.org/stable/c/7cfee26d1950250b14c5cb0a37b142f3fcc6396a [No types assigned] Added Reference kernel.org https://git.kernel.org/stable/c/97e93367e82752e475a33839a80b33bdbef1209f [No types assigned] Added Reference kernel.org https://git.kernel.org/stable/c/51b7841f3fe84606ec0bd8da859d22e05e5419ec [No types assigned] Added Reference kernel.org https://git.kernel.org/stable/c/1341e4b32e1fb1b0acd002ccd56f07bd32f2abc6 [No types assigned] Added Reference kernel.org https://git.kernel.org/stable/c/04c35ab3bdae7fefbd7c7a7355f29fa03a035221 [No types assigned]
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2024-35877
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2024-35877
weaknesses.