5.6
MEDIUM
CVE-2024-36894
"Linux Kernel USB Gadget FFS AIO Dequeue Race"
Description

In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Fix race between aio_cancel() and AIO request complete FFS based applications can utilize the aio_cancel() callback to dequeue pending USB requests submitted to the UDC. There is a scenario where the FFS application issues an AIO cancel call, while the UDC is handling a soft disconnect. For a DWC3 based implementation, the callstack looks like the following: DWC3 Gadget FFS Application dwc3_gadget_soft_disconnect() ... --> dwc3_stop_active_transfers() --> dwc3_gadget_giveback(-ESHUTDOWN) --> ffs_epfile_async_io_complete() ffs_aio_cancel() --> usb_ep_free_request() --> usb_ep_dequeue() There is currently no locking implemented between the AIO completion handler and AIO cancel, so the issue occurs if the completion routine is running in parallel to an AIO cancel call coming from the FFS application. As the completion call frees the USB request (io_data->req) the FFS application is also referencing it for the usb_ep_dequeue() call. This can lead to accessing a stale/hanging pointer. commit b566d38857fc ("usb: gadget: f_fs: use io_data->status consistently") relocated the usb_ep_free_request() into ffs_epfile_async_io_complete(). However, in order to properly implement locking to mitigate this issue, the spinlock can't be added to ffs_epfile_async_io_complete(), as usb_ep_dequeue() (if successfully dequeuing a USB request) will call the function driver's completion handler in the same context. Hence, leading into a deadlock. Fix this issue by moving the usb_ep_free_request() back to ffs_user_copy_worker(), and ensuring that it explicitly sets io_data->req to NULL after freeing it within the ffs->eps_lock. This resolves the race condition above, as the ffs_aio_cancel() routine will not continue attempting to dequeue a request that has already been freed, or the ffs_user_copy_work() not freeing the USB request until the AIO cancel is done referencing it. This fix depends on commit b566d38857fc ("usb: gadget: f_fs: use io_data->status consistently")

INFO

Published Date :

May 30, 2024, 4:15 p.m.

Last Modified :

July 5, 2024, 8:15 a.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

5.2

Exploitability Score :

0.4
Affected Products

The following products are affected by CVE-2024-36894 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2024-36894 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2024-36894 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Jul. 05, 2024

    Action Type Old Value New Value
    Added Reference kernel.org https://git.kernel.org/stable/c/f71a53148ce34898fef099b75386a3a9f4449311 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/9e72ef59cbe61cd1243857a6418ca92104275867 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/e500b1c4e29ad0bd1c1332a1eaea2913627a92dd [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/3613e5023f09b3308545e9d1acda86017ebd418a [No types assigned]
  • CVE Modified by 134c704f-9b21-4f2e-91b3-4a467353bcc0

    Jul. 03, 2024

    Action Type Old Value New Value
    Added CWE CISA-ADP CWE-362
    Added CVSS V3.1 CISA-ADP AV:P/AC:H/PR:L/UI:N/S:U/C:H/I:N/A:H
  • CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Jun. 21, 2024

    Action Type Old Value New Value
    Added Reference kernel.org https://git.kernel.org/stable/c/a0fdccb1c9e027e3195f947f61aa87d6d0d2ea14 [No types assigned]
  • CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    May. 30, 2024

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Fix race between aio_cancel() and AIO request complete FFS based applications can utilize the aio_cancel() callback to dequeue pending USB requests submitted to the UDC. There is a scenario where the FFS application issues an AIO cancel call, while the UDC is handling a soft disconnect. For a DWC3 based implementation, the callstack looks like the following: DWC3 Gadget FFS Application dwc3_gadget_soft_disconnect() ... --> dwc3_stop_active_transfers() --> dwc3_gadget_giveback(-ESHUTDOWN) --> ffs_epfile_async_io_complete() ffs_aio_cancel() --> usb_ep_free_request() --> usb_ep_dequeue() There is currently no locking implemented between the AIO completion handler and AIO cancel, so the issue occurs if the completion routine is running in parallel to an AIO cancel call coming from the FFS application. As the completion call frees the USB request (io_data->req) the FFS application is also referencing it for the usb_ep_dequeue() call. This can lead to accessing a stale/hanging pointer. commit b566d38857fc ("usb: gadget: f_fs: use io_data->status consistently") relocated the usb_ep_free_request() into ffs_epfile_async_io_complete(). However, in order to properly implement locking to mitigate this issue, the spinlock can't be added to ffs_epfile_async_io_complete(), as usb_ep_dequeue() (if successfully dequeuing a USB request) will call the function driver's completion handler in the same context. Hence, leading into a deadlock. Fix this issue by moving the usb_ep_free_request() back to ffs_user_copy_worker(), and ensuring that it explicitly sets io_data->req to NULL after freeing it within the ffs->eps_lock. This resolves the race condition above, as the ffs_aio_cancel() routine will not continue attempting to dequeue a request that has already been freed, or the ffs_user_copy_work() not freeing the USB request until the AIO cancel is done referencing it. This fix depends on commit b566d38857fc ("usb: gadget: f_fs: use io_data->status consistently")
    Added Reference kernel.org https://git.kernel.org/stable/c/73c05ad46bb4fbbdb346004651576d1c8dbcffbb [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/d7461830823242702f5d84084bcccb25159003f4 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/24729b307eefcd7c476065cd7351c1a018082c19 [No types assigned]
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2024-36894 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2024-36894 weaknesses.

CVSS31 - Vulnerability Scoring System
Attack Vector
Attack Complexity
Privileges Required
User Interaction
Scope
Confidentiality
Integrity
Availability