0.0
NA
CVE-2024-42105
Linux Nilfs2 Inode Number Range Vulnerability
Description

In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix inode number range checks Patch series "nilfs2: fix potential issues related to reserved inodes". This series fixes one use-after-free issue reported by syzbot, caused by nilfs2's internal inode being exposed in the namespace on a corrupted filesystem, and a couple of flaws that cause problems if the starting number of non-reserved inodes written in the on-disk super block is intentionally (or corruptly) changed from its default value. This patch (of 3): In the current implementation of nilfs2, "nilfs->ns_first_ino", which gives the first non-reserved inode number, is read from the superblock, but its lower limit is not checked. As a result, if a number that overlaps with the inode number range of reserved inodes such as the root directory or metadata files is set in the super block parameter, the inode number test macros (NILFS_MDT_INODE and NILFS_VALID_INODE) will not function properly. In addition, these test macros use left bit-shift calculations using with the inode number as the shift count via the BIT macro, but the result of a shift calculation that exceeds the bit width of an integer is undefined in the C specification, so if "ns_first_ino" is set to a large value other than the default value NILFS_USER_INO (=11), the macros may potentially malfunction depending on the environment. Fix these issues by checking the lower bound of "nilfs->ns_first_ino" and by preventing bit shifts equal to or greater than the NILFS_USER_INO constant in the inode number test macros. Also, change the type of "ns_first_ino" from signed integer to unsigned integer to avoid the need for type casting in comparisons such as the lower bound check introduced this time.

INFO

Published Date :

July 30, 2024, 8:15 a.m.

Last Modified :

July 30, 2024, 1:32 p.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

Exploitability Score :

Affected Products

The following products are affected by CVE-2024-42105 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2024-42105 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2024-42105 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Jul. 30, 2024

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix inode number range checks Patch series "nilfs2: fix potential issues related to reserved inodes". This series fixes one use-after-free issue reported by syzbot, caused by nilfs2's internal inode being exposed in the namespace on a corrupted filesystem, and a couple of flaws that cause problems if the starting number of non-reserved inodes written in the on-disk super block is intentionally (or corruptly) changed from its default value. This patch (of 3): In the current implementation of nilfs2, "nilfs->ns_first_ino", which gives the first non-reserved inode number, is read from the superblock, but its lower limit is not checked. As a result, if a number that overlaps with the inode number range of reserved inodes such as the root directory or metadata files is set in the super block parameter, the inode number test macros (NILFS_MDT_INODE and NILFS_VALID_INODE) will not function properly. In addition, these test macros use left bit-shift calculations using with the inode number as the shift count via the BIT macro, but the result of a shift calculation that exceeds the bit width of an integer is undefined in the C specification, so if "ns_first_ino" is set to a large value other than the default value NILFS_USER_INO (=11), the macros may potentially malfunction depending on the environment. Fix these issues by checking the lower bound of "nilfs->ns_first_ino" and by preventing bit shifts equal to or greater than the NILFS_USER_INO constant in the inode number test macros. Also, change the type of "ns_first_ino" from signed integer to unsigned integer to avoid the need for type casting in comparisons such as the lower bound check introduced this time.
    Added Reference kernel.org https://git.kernel.org/stable/c/57235c3c88bb430043728d0d02f44a4efe386476 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/08cab183a624ba71603f3754643ae11cab34dbc4 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/731011ac6c37cbe97ece229fc6daa486276052c5 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/3be4dcc8d7bea52ea41f87aa4bbf959efe7a5987 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/fae1959d6ab2c52677b113935e36ab4e25df37ea [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/9194f8ca57527958bee207919458e372d638d783 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/1c91058425a01131ea30dda6cf43c67b17884d6a [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/e2fec219a36e0993642844be0f345513507031f4 [No types assigned]
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2024-42105 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2024-42105 weaknesses.

NONE - Vulnerability Scoring System