5.5
MEDIUM
CVE-2024-50140
"Linux Kernel KASAN undergrad Allocation Vulnerability"
Description

In the Linux kernel, the following vulnerability has been resolved: sched/core: Disable page allocation in task_tick_mm_cid() With KASAN and PREEMPT_RT enabled, calling task_work_add() in task_tick_mm_cid() may cause the following splat. [ 63.696416] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 63.696416] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 610, name: modprobe [ 63.696416] preempt_count: 10001, expected: 0 [ 63.696416] RCU nest depth: 1, expected: 1 This problem is caused by the following call trace. sched_tick() [ acquire rq->__lock ] -> task_tick_mm_cid() -> task_work_add() -> __kasan_record_aux_stack() -> kasan_save_stack() -> stack_depot_save_flags() -> alloc_pages_mpol_noprof() -> __alloc_pages_noprof() -> get_page_from_freelist() -> rmqueue() -> rmqueue_pcplist() -> __rmqueue_pcplist() -> rmqueue_bulk() -> rt_spin_lock() The rq lock is a raw_spinlock_t. We can't sleep while holding it. IOW, we can't call alloc_pages() in stack_depot_save_flags(). The task_tick_mm_cid() function with its task_work_add() call was introduced by commit 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") in v6.4 kernel. Fortunately, there is a kasan_record_aux_stack_noalloc() variant that calls stack_depot_save_flags() while not allowing it to allocate new pages. To allow task_tick_mm_cid() to use task_work without page allocation, a new TWAF_NO_ALLOC flag is added to enable calling kasan_record_aux_stack_noalloc() instead of kasan_record_aux_stack() if set. The task_tick_mm_cid() function is modified to add this new flag. The possible downside is the missing stack trace in a KASAN report due to new page allocation required when task_work_add_noallloc() is called which should be rare.

INFO

Published Date :

Nov. 7, 2024, 10:15 a.m.

Last Modified :

Nov. 22, 2024, 4:43 p.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

3.6

Exploitability Score :

1.8
Affected Products

The following products are affected by CVE-2024-50140 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel
References to Advisories, Solutions, and Tools

Here, you will find a curated list of external links that provide in-depth information, practical solutions, and valuable tools related to CVE-2024-50140.

URL Resource
https://git.kernel.org/stable/c/509c29d0d26f68a6f6d0a05cb1a89725237e2b87 Patch
https://git.kernel.org/stable/c/73ab05aa46b02d96509cb029a8d04fca7bbde8c7 Patch
https://git.kernel.org/stable/c/ce0241ef83eed55f675376e8a3605d23de53d875 Patch

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2024-50140 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2024-50140 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • Initial Analysis by [email protected]

    Nov. 22, 2024

    Action Type Old Value New Value
    Added CVSS V3.1 NIST AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
    Added CWE NIST NVD-CWE-noinfo
    Added CPE Configuration OR *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.4 up to (excluding) 6.6.59 *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.7 up to (excluding) 6.11.6 *cpe:2.3:o:linux:linux_kernel:6.12:rc1:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc2:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc3:*:*:*:*:*:*
    Changed Reference Type https://git.kernel.org/stable/c/509c29d0d26f68a6f6d0a05cb1a89725237e2b87 No Types Assigned https://git.kernel.org/stable/c/509c29d0d26f68a6f6d0a05cb1a89725237e2b87 Patch
    Changed Reference Type https://git.kernel.org/stable/c/73ab05aa46b02d96509cb029a8d04fca7bbde8c7 No Types Assigned https://git.kernel.org/stable/c/73ab05aa46b02d96509cb029a8d04fca7bbde8c7 Patch
    Changed Reference Type https://git.kernel.org/stable/c/ce0241ef83eed55f675376e8a3605d23de53d875 No Types Assigned https://git.kernel.org/stable/c/ce0241ef83eed55f675376e8a3605d23de53d875 Patch
  • CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Nov. 07, 2024

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: sched/core: Disable page allocation in task_tick_mm_cid() With KASAN and PREEMPT_RT enabled, calling task_work_add() in task_tick_mm_cid() may cause the following splat. [ 63.696416] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 63.696416] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 610, name: modprobe [ 63.696416] preempt_count: 10001, expected: 0 [ 63.696416] RCU nest depth: 1, expected: 1 This problem is caused by the following call trace. sched_tick() [ acquire rq->__lock ] -> task_tick_mm_cid() -> task_work_add() -> __kasan_record_aux_stack() -> kasan_save_stack() -> stack_depot_save_flags() -> alloc_pages_mpol_noprof() -> __alloc_pages_noprof() -> get_page_from_freelist() -> rmqueue() -> rmqueue_pcplist() -> __rmqueue_pcplist() -> rmqueue_bulk() -> rt_spin_lock() The rq lock is a raw_spinlock_t. We can't sleep while holding it. IOW, we can't call alloc_pages() in stack_depot_save_flags(). The task_tick_mm_cid() function with its task_work_add() call was introduced by commit 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") in v6.4 kernel. Fortunately, there is a kasan_record_aux_stack_noalloc() variant that calls stack_depot_save_flags() while not allowing it to allocate new pages. To allow task_tick_mm_cid() to use task_work without page allocation, a new TWAF_NO_ALLOC flag is added to enable calling kasan_record_aux_stack_noalloc() instead of kasan_record_aux_stack() if set. The task_tick_mm_cid() function is modified to add this new flag. The possible downside is the missing stack trace in a KASAN report due to new page allocation required when task_work_add_noallloc() is called which should be rare.
    Added Reference kernel.org https://git.kernel.org/stable/c/509c29d0d26f68a6f6d0a05cb1a89725237e2b87 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/ce0241ef83eed55f675376e8a3605d23de53d875 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/73ab05aa46b02d96509cb029a8d04fca7bbde8c7 [No types assigned]
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2024-50140 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2024-50140 weaknesses.

CVSS31 - Vulnerability Scoring System
Attack Vector
Attack Complexity
Privileges Required
User Interaction
Scope
Confidentiality
Integrity
Availability