5.5
MEDIUM
CVE-2024-53044
Linux Kernel Flow Block XArray Double Insert Vulnerability
Description

In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_api: fix xa_insert() error path in tcf_block_get_ext() This command: $ tc qdisc replace dev eth0 ingress_block 1 egress_block 1 clsact Error: block dev insert failed: -EBUSY. fails because user space requests the same block index to be set for both ingress and egress. [ side note, I don't think it even failed prior to commit 913b47d3424e ("net/sched: Introduce tc block netdev tracking infra"), because this is a command from an old set of notes of mine which used to work, but alas, I did not scientifically bisect this ] The problem is not that it fails, but rather, that the second time around, it fails differently (and irrecoverably): $ tc qdisc replace dev eth0 ingress_block 1 egress_block 1 clsact Error: dsa_core: Flow block cb is busy. [ another note: the extack is added by me for illustration purposes. the context of the problem is that clsact_init() obtains the same &q->ingress_block pointer as &q->egress_block, and since we call tcf_block_get_ext() on both of them, "dev" will be added to the block->ports xarray twice, thus failing the operation: once through the ingress block pointer, and once again through the egress block pointer. the problem itself is that when xa_insert() fails, we have emitted a FLOW_BLOCK_BIND command through ndo_setup_tc(), but the offload never sees a corresponding FLOW_BLOCK_UNBIND. ] Even correcting the bad user input, we still cannot recover: $ tc qdisc replace dev swp3 ingress_block 1 egress_block 2 clsact Error: dsa_core: Flow block cb is busy. Basically the only way to recover is to reboot the system, or unbind and rebind the net device driver. To fix the bug, we need to fill the correct error teardown path which was missed during code movement, and call tcf_block_offload_unbind() when xa_insert() fails. [ last note, fundamentally I blame the label naming convention in tcf_block_get_ext() for the bug. The labels should be named after what they do, not after the error path that jumps to them. This way, it is obviously wrong that two labels pointing to the same code mean something is wrong, and checking the code correctness at the goto site is also easier ]

INFO

Published Date :

Nov. 19, 2024, 6:15 p.m.

Last Modified :

Nov. 27, 2024, 4:40 p.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

3.6

Exploitability Score :

1.8
Affected Products

The following products are affected by CVE-2024-53044 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel
References to Advisories, Solutions, and Tools

Here, you will find a curated list of external links that provide in-depth information, practical solutions, and valuable tools related to CVE-2024-53044.

URL Resource
https://git.kernel.org/stable/c/8966eb69a143b1c032365fe84f2815f3c46f2590 Patch
https://git.kernel.org/stable/c/a13e690191eafc154b3f60afe9ce35aa9b9128b4 Patch

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2024-53044 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2024-53044 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • Initial Analysis by [email protected]

    Nov. 27, 2024

    Action Type Old Value New Value
    Added CVSS V3.1 NIST AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
    Added CWE NIST NVD-CWE-noinfo
    Added CPE Configuration OR *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.8 up to (excluding) 6.11.7 *cpe:2.3:o:linux:linux_kernel:6.12:rc1:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc2:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc3:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc4:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc5:*:*:*:*:*:*
    Changed Reference Type https://git.kernel.org/stable/c/8966eb69a143b1c032365fe84f2815f3c46f2590 No Types Assigned https://git.kernel.org/stable/c/8966eb69a143b1c032365fe84f2815f3c46f2590 Patch
    Changed Reference Type https://git.kernel.org/stable/c/a13e690191eafc154b3f60afe9ce35aa9b9128b4 No Types Assigned https://git.kernel.org/stable/c/a13e690191eafc154b3f60afe9ce35aa9b9128b4 Patch
  • CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Nov. 19, 2024

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_api: fix xa_insert() error path in tcf_block_get_ext() This command: $ tc qdisc replace dev eth0 ingress_block 1 egress_block 1 clsact Error: block dev insert failed: -EBUSY. fails because user space requests the same block index to be set for both ingress and egress. [ side note, I don't think it even failed prior to commit 913b47d3424e ("net/sched: Introduce tc block netdev tracking infra"), because this is a command from an old set of notes of mine which used to work, but alas, I did not scientifically bisect this ] The problem is not that it fails, but rather, that the second time around, it fails differently (and irrecoverably): $ tc qdisc replace dev eth0 ingress_block 1 egress_block 1 clsact Error: dsa_core: Flow block cb is busy. [ another note: the extack is added by me for illustration purposes. the context of the problem is that clsact_init() obtains the same &q->ingress_block pointer as &q->egress_block, and since we call tcf_block_get_ext() on both of them, "dev" will be added to the block->ports xarray twice, thus failing the operation: once through the ingress block pointer, and once again through the egress block pointer. the problem itself is that when xa_insert() fails, we have emitted a FLOW_BLOCK_BIND command through ndo_setup_tc(), but the offload never sees a corresponding FLOW_BLOCK_UNBIND. ] Even correcting the bad user input, we still cannot recover: $ tc qdisc replace dev swp3 ingress_block 1 egress_block 2 clsact Error: dsa_core: Flow block cb is busy. Basically the only way to recover is to reboot the system, or unbind and rebind the net device driver. To fix the bug, we need to fill the correct error teardown path which was missed during code movement, and call tcf_block_offload_unbind() when xa_insert() fails. [ last note, fundamentally I blame the label naming convention in tcf_block_get_ext() for the bug. The labels should be named after what they do, not after the error path that jumps to them. This way, it is obviously wrong that two labels pointing to the same code mean something is wrong, and checking the code correctness at the goto site is also easier ]
    Added Reference kernel.org https://git.kernel.org/stable/c/8966eb69a143b1c032365fe84f2815f3c46f2590 [No types assigned]
    Added Reference kernel.org https://git.kernel.org/stable/c/a13e690191eafc154b3f60afe9ce35aa9b9128b4 [No types assigned]
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2024-53044 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2024-53044 weaknesses.

CVSS31 - Vulnerability Scoring System
Attack Vector
Attack Complexity
Privileges Required
User Interaction
Scope
Confidentiality
Integrity
Availability