CVE-2024-53111
Linux kernel mremap address wraparound vulnerability.
Description
In the Linux kernel, the following vulnerability has been resolved: mm/mremap: fix address wraparound in move_page_tables() On 32-bit platforms, it is possible for the expression `len + old_addr < old_end` to be false-positive if `len + old_addr` wraps around. `old_addr` is the cursor in the old range up to which page table entries have been moved; so if the operation succeeded, `old_addr` is the *end* of the old region, and adding `len` to it can wrap. The overflow causes mremap() to mistakenly believe that PTEs have been copied; the consequence is that mremap() bails out, but doesn't move the PTEs back before the new VMA is unmapped, causing anonymous pages in the region to be lost. So basically if userspace tries to mremap() a private-anon region and hits this bug, mremap() will return an error and the private-anon region's contents appear to have been zeroed. The idea of this check is that `old_end - len` is the original start address, and writing the check that way also makes it easier to read; so fix the check by rearranging the comparison accordingly. (An alternate fix would be to refactor this function by introducing an "orig_old_start" variable or such.) Tested in a VM with a 32-bit X86 kernel; without the patch: ``` user@horn:~/big_mremap$ cat test.c #define _GNU_SOURCE #include <stdlib.h> #include <stdio.h> #include <err.h> #include <sys/mman.h> #define ADDR1 ((void*)0x60000000) #define ADDR2 ((void*)0x10000000) #define SIZE 0x50000000uL int main(void) { unsigned char *p1 = mmap(ADDR1, SIZE, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0); if (p1 == MAP_FAILED) err(1, "mmap 1"); unsigned char *p2 = mmap(ADDR2, SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0); if (p2 == MAP_FAILED) err(1, "mmap 2"); *p1 = 0x41; printf("first char is 0x%02hhx\n", *p1); unsigned char *p3 = mremap(p1, SIZE, SIZE, MREMAP_MAYMOVE|MREMAP_FIXED, p2); if (p3 == MAP_FAILED) { printf("mremap() failed; first char is 0x%02hhx\n", *p1); } else { printf("mremap() succeeded; first char is 0x%02hhx\n", *p3); } } user@horn:~/big_mremap$ gcc -static -o test test.c user@horn:~/big_mremap$ setarch -R ./test first char is 0x41 mremap() failed; first char is 0x00 ``` With the patch: ``` user@horn:~/big_mremap$ setarch -R ./test first char is 0x41 mremap() succeeded; first char is 0x41 ```
INFO
Published Date :
Dec. 2, 2024, 2:15 p.m.
Last Modified :
Dec. 11, 2024, 8:27 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
3.6
Exploitability Score :
1.8
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2024-53111
.
URL | Resource |
---|---|
https://git.kernel.org/stable/c/909543dc279a91122fb08e4653a72b82f0ad28f4 | Patch |
https://git.kernel.org/stable/c/a4a282daf1a190f03790bf163458ea3c8d28d217 | Patch |
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2024-53111
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2024-53111
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
Initial Analysis by [email protected]
Dec. 11, 2024
Action Type Old Value New Value Added CVSS V3.1 NIST AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H Added CWE NIST CWE-190 Added CPE Configuration OR *cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* versions from (including) 6.7 up to (excluding) 6.11.10 *cpe:2.3:o:linux:linux_kernel:6.12:rc1:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc2:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc3:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc4:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc5:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc6:*:*:*:*:*:* *cpe:2.3:o:linux:linux_kernel:6.12:rc7:*:*:*:*:*:* Changed Reference Type https://git.kernel.org/stable/c/909543dc279a91122fb08e4653a72b82f0ad28f4 No Types Assigned https://git.kernel.org/stable/c/909543dc279a91122fb08e4653a72b82f0ad28f4 Patch Changed Reference Type https://git.kernel.org/stable/c/a4a282daf1a190f03790bf163458ea3c8d28d217 No Types Assigned https://git.kernel.org/stable/c/a4a282daf1a190f03790bf163458ea3c8d28d217 Patch -
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Dec. 02, 2024
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: mm/mremap: fix address wraparound in move_page_tables() On 32-bit platforms, it is possible for the expression `len + old_addr < old_end` to be false-positive if `len + old_addr` wraps around. `old_addr` is the cursor in the old range up to which page table entries have been moved; so if the operation succeeded, `old_addr` is the *end* of the old region, and adding `len` to it can wrap. The overflow causes mremap() to mistakenly believe that PTEs have been copied; the consequence is that mremap() bails out, but doesn't move the PTEs back before the new VMA is unmapped, causing anonymous pages in the region to be lost. So basically if userspace tries to mremap() a private-anon region and hits this bug, mremap() will return an error and the private-anon region's contents appear to have been zeroed. The idea of this check is that `old_end - len` is the original start address, and writing the check that way also makes it easier to read; so fix the check by rearranging the comparison accordingly. (An alternate fix would be to refactor this function by introducing an "orig_old_start" variable or such.) Tested in a VM with a 32-bit X86 kernel; without the patch: ``` user@horn:~/big_mremap$ cat test.c #define _GNU_SOURCE #include <stdlib.h> #include <stdio.h> #include <err.h> #include <sys/mman.h> #define ADDR1 ((void*)0x60000000) #define ADDR2 ((void*)0x10000000) #define SIZE 0x50000000uL int main(void) { unsigned char *p1 = mmap(ADDR1, SIZE, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0); if (p1 == MAP_FAILED) err(1, "mmap 1"); unsigned char *p2 = mmap(ADDR2, SIZE, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0); if (p2 == MAP_FAILED) err(1, "mmap 2"); *p1 = 0x41; printf("first char is 0x%02hhx\n", *p1); unsigned char *p3 = mremap(p1, SIZE, SIZE, MREMAP_MAYMOVE|MREMAP_FIXED, p2); if (p3 == MAP_FAILED) { printf("mremap() failed; first char is 0x%02hhx\n", *p1); } else { printf("mremap() succeeded; first char is 0x%02hhx\n", *p3); } } user@horn:~/big_mremap$ gcc -static -o test test.c user@horn:~/big_mremap$ setarch -R ./test first char is 0x41 mremap() failed; first char is 0x00 ``` With the patch: ``` user@horn:~/big_mremap$ setarch -R ./test first char is 0x41 mremap() succeeded; first char is 0x41 ``` Added Reference https://git.kernel.org/stable/c/909543dc279a91122fb08e4653a72b82f0ad28f4 Added Reference https://git.kernel.org/stable/c/a4a282daf1a190f03790bf163458ea3c8d28d217
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2024-53111
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2024-53111
weaknesses.