CVE-2024-53130
Description
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix null-ptr-deref in block_dirty_buffer tracepoint When using the "block:block_dirty_buffer" tracepoint, mark_buffer_dirty() may cause a NULL pointer dereference, or a general protection fault when KASAN is enabled. This happens because, since the tracepoint was added in mark_buffer_dirty(), it references the dev_t member bh->b_bdev->bd_dev regardless of whether the buffer head has a pointer to a block_device structure. In the current implementation, nilfs_grab_buffer(), which grabs a buffer to read (or create) a block of metadata, including b-tree node blocks, does not set the block device, but instead does so only if the buffer is not in the "uptodate" state for each of its caller block reading functions. However, if the uptodate flag is set on a folio/page, and the buffer heads are detached from it by try_to_free_buffers(), and new buffer heads are then attached by create_empty_buffers(), the uptodate flag may be restored to each buffer without the block device being set to bh->b_bdev, and mark_buffer_dirty() may be called later in that state, resulting in the bug mentioned above. Fix this issue by making nilfs_grab_buffer() always set the block device of the super block structure to the buffer head, regardless of the state of the buffer's uptodate flag.
INFO
Published Date :
Dec. 4, 2024, 3:15 p.m.
Last Modified :
Dec. 5, 2024, 12:15 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2024-53130
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2024-53130
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2024-53130
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
CVE Modified by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Dec. 05, 2024
Action Type Old Value New Value Added Reference https://git.kernel.org/stable/c/7af3309c7a2ef26831a67125b11c34a7e01c1b2a -
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Dec. 04, 2024
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix null-ptr-deref in block_dirty_buffer tracepoint When using the "block:block_dirty_buffer" tracepoint, mark_buffer_dirty() may cause a NULL pointer dereference, or a general protection fault when KASAN is enabled. This happens because, since the tracepoint was added in mark_buffer_dirty(), it references the dev_t member bh->b_bdev->bd_dev regardless of whether the buffer head has a pointer to a block_device structure. In the current implementation, nilfs_grab_buffer(), which grabs a buffer to read (or create) a block of metadata, including b-tree node blocks, does not set the block device, but instead does so only if the buffer is not in the "uptodate" state for each of its caller block reading functions. However, if the uptodate flag is set on a folio/page, and the buffer heads are detached from it by try_to_free_buffers(), and new buffer heads are then attached by create_empty_buffers(), the uptodate flag may be restored to each buffer without the block device being set to bh->b_bdev, and mark_buffer_dirty() may be called later in that state, resulting in the bug mentioned above. Fix this issue by making nilfs_grab_buffer() always set the block device of the super block structure to the buffer head, regardless of the state of the buffer's uptodate flag. Added Reference https://git.kernel.org/stable/c/2026559a6c4ce34db117d2db8f710fe2a9420d5a Added Reference https://git.kernel.org/stable/c/86b19031dbc79abc378dfae357f6ea33ebeb0c95 Added Reference https://git.kernel.org/stable/c/b0e4765740040c44039282057ecacd7435d1d2ba Added Reference https://git.kernel.org/stable/c/ffc440a76a0f476a7e6ea838ec0dc8e9979944d1
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2024-53130
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2024-53130
weaknesses.