CVE-2024-53153
Qualcomm PCI: Incorrect Cleanup Timeout
Description
In the Linux kernel, the following vulnerability has been resolved: PCI: qcom-ep: Move controller cleanups to qcom_pcie_perst_deassert() Currently, the endpoint cleanup function dw_pcie_ep_cleanup() and EPF deinit notify function pci_epc_deinit_notify() are called during the execution of qcom_pcie_perst_assert() i.e., when the host has asserted PERST#. But quickly after this step, refclk will also be disabled by the host. All of the Qcom endpoint SoCs supported as of now depend on the refclk from the host for keeping the controller operational. Due to this limitation, any access to the hardware registers in the absence of refclk will result in a whole endpoint crash. Unfortunately, most of the controller cleanups require accessing the hardware registers (like eDMA cleanup performed in dw_pcie_ep_cleanup(), powering down MHI EPF etc...). So these cleanup functions are currently causing the crash in the endpoint SoC once host asserts PERST#. One way to address this issue is by generating the refclk in the endpoint itself and not depending on the host. But that is not always possible as some of the endpoint designs do require the endpoint to consume refclk from the host (as I was told by the Qcom engineers). Thus, fix this crash by moving the controller cleanups to the start of the qcom_pcie_perst_deassert() function. qcom_pcie_perst_deassert() is called whenever the host has deasserted PERST# and it is guaranteed that the refclk would be active at this point. So at the start of this function (after enabling resources), the controller cleanup can be performed. Once finished, rest of the code execution for PERST# deassert can continue as usual.
INFO
Published Date :
Dec. 24, 2024, 12:15 p.m.
Last Modified :
Dec. 24, 2024, 12:15 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2024-53153
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2024-53153
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2024-53153
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Dec. 24, 2024
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: PCI: qcom-ep: Move controller cleanups to qcom_pcie_perst_deassert() Currently, the endpoint cleanup function dw_pcie_ep_cleanup() and EPF deinit notify function pci_epc_deinit_notify() are called during the execution of qcom_pcie_perst_assert() i.e., when the host has asserted PERST#. But quickly after this step, refclk will also be disabled by the host. All of the Qcom endpoint SoCs supported as of now depend on the refclk from the host for keeping the controller operational. Due to this limitation, any access to the hardware registers in the absence of refclk will result in a whole endpoint crash. Unfortunately, most of the controller cleanups require accessing the hardware registers (like eDMA cleanup performed in dw_pcie_ep_cleanup(), powering down MHI EPF etc...). So these cleanup functions are currently causing the crash in the endpoint SoC once host asserts PERST#. One way to address this issue is by generating the refclk in the endpoint itself and not depending on the host. But that is not always possible as some of the endpoint designs do require the endpoint to consume refclk from the host (as I was told by the Qcom engineers). Thus, fix this crash by moving the controller cleanups to the start of the qcom_pcie_perst_deassert() function. qcom_pcie_perst_deassert() is called whenever the host has deasserted PERST# and it is guaranteed that the refclk would be active at this point. So at the start of this function (after enabling resources), the controller cleanup can be performed. Once finished, rest of the code execution for PERST# deassert can continue as usual. Added Reference https://git.kernel.org/stable/c/516969d5765e2302d33b4f251496eedb757d55ea Added Reference https://git.kernel.org/stable/c/7d7cf89b119af433354f865fc01017b9f8aa411a Added Reference https://git.kernel.org/stable/c/e03b5f1615c84f4139cb53ef8659f4cdb8d6a563
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2024-53153
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2024-53153
weaknesses.