CVE-2025-21778
QEMU Linux Kernel Tracing Persistent Ring Buffer Mmap Denial of Service Vulnerability
Description
In the Linux kernel, the following vulnerability has been resolved: tracing: Do not allow mmap() of persistent ring buffer When trying to mmap a trace instance buffer that is attached to reserve_mem, it would crash: BUG: unable to handle page fault for address: ffffe97bd00025c8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 2862f3067 P4D 2862f3067 PUD 0 Oops: Oops: 0000 [#1] PREEMPT_RT SMP PTI CPU: 4 UID: 0 PID: 981 Comm: mmap-rb Not tainted 6.14.0-rc2-test-00003-g7f1a5e3fbf9e-dirty #233 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:validate_page_before_insert+0x5/0xb0 Code: e2 01 89 d0 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 <48> 8b 46 08 a8 01 75 67 66 90 48 89 f0 8b 50 34 85 d2 74 76 48 89 RSP: 0018:ffffb148c2f3f968 EFLAGS: 00010246 RAX: ffff9fa5d3322000 RBX: ffff9fa5ccff9c08 RCX: 00000000b879ed29 RDX: ffffe97bd00025c0 RSI: ffffe97bd00025c0 RDI: ffff9fa5ccff9c08 RBP: ffffb148c2f3f9f0 R08: 0000000000000004 R09: 0000000000000004 R10: 0000000000000000 R11: 0000000000000200 R12: 0000000000000000 R13: 00007f16a18d5000 R14: ffff9fa5c48db6a8 R15: 0000000000000000 FS: 00007f16a1b54740(0000) GS:ffff9fa73df00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffe97bd00025c8 CR3: 00000001048c6006 CR4: 0000000000172ef0 Call Trace: <TASK> ? __die_body.cold+0x19/0x1f ? __die+0x2e/0x40 ? page_fault_oops+0x157/0x2b0 ? search_module_extables+0x53/0x80 ? validate_page_before_insert+0x5/0xb0 ? kernelmode_fixup_or_oops.isra.0+0x5f/0x70 ? __bad_area_nosemaphore+0x16e/0x1b0 ? bad_area_nosemaphore+0x16/0x20 ? do_kern_addr_fault+0x77/0x90 ? exc_page_fault+0x22b/0x230 ? asm_exc_page_fault+0x2b/0x30 ? validate_page_before_insert+0x5/0xb0 ? vm_insert_pages+0x151/0x400 __rb_map_vma+0x21f/0x3f0 ring_buffer_map+0x21b/0x2f0 tracing_buffers_mmap+0x70/0xd0 __mmap_region+0x6f0/0xbd0 mmap_region+0x7f/0x130 do_mmap+0x475/0x610 vm_mmap_pgoff+0xf2/0x1d0 ksys_mmap_pgoff+0x166/0x200 __x64_sys_mmap+0x37/0x50 x64_sys_call+0x1670/0x1d70 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f The reason was that the code that maps the ring buffer pages to user space has: page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); And uses that in: vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); But virt_to_page() does not work with vmap()'d memory which is what the persistent ring buffer has. It is rather trivial to allow this, but for now just disable mmap() of instances that have their ring buffer from the reserve_mem option. If an mmap() is performed on a persistent buffer it will return -ENODEV just like it would if the .mmap field wasn't defined in the file_operations structure.
INFO
Published Date :
Feb. 27, 2025, 3:15 a.m.
Last Modified :
Feb. 27, 2025, 3:15 a.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-21778
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-21778
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-21778
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Feb. 27, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: tracing: Do not allow mmap() of persistent ring buffer When trying to mmap a trace instance buffer that is attached to reserve_mem, it would crash: BUG: unable to handle page fault for address: ffffe97bd00025c8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 2862f3067 P4D 2862f3067 PUD 0 Oops: Oops: 0000 [#1] PREEMPT_RT SMP PTI CPU: 4 UID: 0 PID: 981 Comm: mmap-rb Not tainted 6.14.0-rc2-test-00003-g7f1a5e3fbf9e-dirty #233 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:validate_page_before_insert+0x5/0xb0 Code: e2 01 89 d0 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 <48> 8b 46 08 a8 01 75 67 66 90 48 89 f0 8b 50 34 85 d2 74 76 48 89 RSP: 0018:ffffb148c2f3f968 EFLAGS: 00010246 RAX: ffff9fa5d3322000 RBX: ffff9fa5ccff9c08 RCX: 00000000b879ed29 RDX: ffffe97bd00025c0 RSI: ffffe97bd00025c0 RDI: ffff9fa5ccff9c08 RBP: ffffb148c2f3f9f0 R08: 0000000000000004 R09: 0000000000000004 R10: 0000000000000000 R11: 0000000000000200 R12: 0000000000000000 R13: 00007f16a18d5000 R14: ffff9fa5c48db6a8 R15: 0000000000000000 FS: 00007f16a1b54740(0000) GS:ffff9fa73df00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffe97bd00025c8 CR3: 00000001048c6006 CR4: 0000000000172ef0 Call Trace: <TASK> ? __die_body.cold+0x19/0x1f ? __die+0x2e/0x40 ? page_fault_oops+0x157/0x2b0 ? search_module_extables+0x53/0x80 ? validate_page_before_insert+0x5/0xb0 ? kernelmode_fixup_or_oops.isra.0+0x5f/0x70 ? __bad_area_nosemaphore+0x16e/0x1b0 ? bad_area_nosemaphore+0x16/0x20 ? do_kern_addr_fault+0x77/0x90 ? exc_page_fault+0x22b/0x230 ? asm_exc_page_fault+0x2b/0x30 ? validate_page_before_insert+0x5/0xb0 ? vm_insert_pages+0x151/0x400 __rb_map_vma+0x21f/0x3f0 ring_buffer_map+0x21b/0x2f0 tracing_buffers_mmap+0x70/0xd0 __mmap_region+0x6f0/0xbd0 mmap_region+0x7f/0x130 do_mmap+0x475/0x610 vm_mmap_pgoff+0xf2/0x1d0 ksys_mmap_pgoff+0x166/0x200 __x64_sys_mmap+0x37/0x50 x64_sys_call+0x1670/0x1d70 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f The reason was that the code that maps the ring buffer pages to user space has: page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); And uses that in: vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); But virt_to_page() does not work with vmap()'d memory which is what the persistent ring buffer has. It is rather trivial to allow this, but for now just disable mmap() of instances that have their ring buffer from the reserve_mem option. If an mmap() is performed on a persistent buffer it will return -ENODEV just like it would if the .mmap field wasn't defined in the file_operations structure. Added Reference https://git.kernel.org/stable/c/129fe718819cc5e24ea2f489db9ccd4371f0c6f6 Added Reference https://git.kernel.org/stable/c/cf5aa560e5c7628b57c928741d7e6a9a0f6f0e67 Added Reference https://git.kernel.org/stable/c/e8dff5f73912513fc9b52ab992d861517c9a9975
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-21778
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-21778
weaknesses.