0.0
NA
CVE-2025-21932
Linux Kernel mm: VMA Modify Out of Memory Failure Vulnerability
Description

In the Linux kernel, the following vulnerability has been resolved: mm: abort vma_modify() on merge out of memory failure The remainder of vma_modify() relies upon the vmg state remaining pristine after a merge attempt. Usually this is the case, however in the one edge case scenario of a merge attempt failing not due to the specified range being unmergeable, but rather due to an out of memory error arising when attempting to commit the merge, this assumption becomes untrue. This results in vmg->start, end being modified, and thus the proceeding attempts to split the VMA will be done with invalid start/end values. Thankfully, it is likely practically impossible for us to hit this in reality, as it would require a maple tree node pre-allocation failure that would likely never happen due to it being 'too small to fail', i.e. the kernel would simply keep retrying reclaim until it succeeded. However, this scenario remains theoretically possible, and what we are doing here is wrong so we must correct it. The safest option is, when this scenario occurs, to simply give up the operation. If we cannot allocate memory to merge, then we cannot allocate memory to split either (perhaps moreso!). Any scenario where this would be happening would be under very extreme (likely fatal) memory pressure, so it's best we give up early. So there is no doubt it is appropriate to simply bail out in this scenario. However, in general we must if at all possible never assume VMG state is stable after a merge attempt, since merge operations update VMG fields. As a result, additionally also make this clear by storing start, end in local variables. The issue was reported originally by syzkaller, and by Brad Spengler (via an off-list discussion), and in both instances it manifested as a triggering of the assert: VM_WARN_ON_VMG(start >= end, vmg); In vma_merge_existing_range(). It seems at least one scenario in which this is occurring is one in which the merge being attempted is due to an madvise() across multiple VMAs which looks like this: start end |<------>| |----------|------| | vma | next | |----------|------| When madvise_walk_vmas() is invoked, we first find vma in the above (determining prev to be equal to vma as we are offset into vma), and then enter the loop. We determine the end of vma that forms part of the range we are madvise()'ing by setting 'tmp' to this value: /* Here vma->vm_start <= start < (end|vma->vm_end) */ tmp = vma->vm_end; We then invoke the madvise() operation via visit(), letting prev get updated to point to vma as part of the operation: /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ error = visit(vma, &prev, start, tmp, arg); Where the visit() function pointer in this instance is madvise_vma_behavior(). As observed in syzkaller reports, it is ultimately madvise_update_vma() that is invoked, calling vma_modify_flags_name() and vma_modify() in turn. Then, in vma_modify(), we attempt the merge: merged = vma_merge_existing_range(vmg); if (merged) return merged; We invoke this with vmg->start, end set to start, tmp as such: start tmp |<--->| |----------|------| | vma | next | |----------|------| We find ourselves in the merge right scenario, but the one in which we cannot remove the middle (we are offset into vma). Here we have a special case where vmg->start, end get set to perhaps unintuitive values - we intended to shrink the middle VMA and expand the next. This means vmg->start, end are set to... vma->vm_start, start. Now the commit_merge() fails, and vmg->start, end are left like this. This means we return to the rest of vma_modify() with vmg->start, end (here denoted as start', end') set as: start' end' |<-->| |----------|------| | vma | next | |----------|------| So we now erroneously try to split accordingly. This is where the unfortunate ---truncated---

INFO

Published Date :

April 1, 2025, 4:15 p.m.

Last Modified :

April 1, 2025, 8:26 p.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

Exploitability Score :

Affected Products

The following products are affected by CVE-2025-21932 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel
References to Advisories, Solutions, and Tools

Here, you will find a curated list of external links that provide in-depth information, practical solutions, and valuable tools related to CVE-2025-21932.

URL Resource
https://git.kernel.org/stable/c/47b16d0462a460000b8f05dfb1292377ac48f3ca
https://git.kernel.org/stable/c/53fd215f7886a1e8dea5a9ca1391dbb697fff601
https://git.kernel.org/stable/c/79636d2981b066acd945117387a9533f56411f6f

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2025-21932 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2025-21932 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Apr. 01, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: mm: abort vma_modify() on merge out of memory failure The remainder of vma_modify() relies upon the vmg state remaining pristine after a merge attempt. Usually this is the case, however in the one edge case scenario of a merge attempt failing not due to the specified range being unmergeable, but rather due to an out of memory error arising when attempting to commit the merge, this assumption becomes untrue. This results in vmg->start, end being modified, and thus the proceeding attempts to split the VMA will be done with invalid start/end values. Thankfully, it is likely practically impossible for us to hit this in reality, as it would require a maple tree node pre-allocation failure that would likely never happen due to it being 'too small to fail', i.e. the kernel would simply keep retrying reclaim until it succeeded. However, this scenario remains theoretically possible, and what we are doing here is wrong so we must correct it. The safest option is, when this scenario occurs, to simply give up the operation. If we cannot allocate memory to merge, then we cannot allocate memory to split either (perhaps moreso!). Any scenario where this would be happening would be under very extreme (likely fatal) memory pressure, so it's best we give up early. So there is no doubt it is appropriate to simply bail out in this scenario. However, in general we must if at all possible never assume VMG state is stable after a merge attempt, since merge operations update VMG fields. As a result, additionally also make this clear by storing start, end in local variables. The issue was reported originally by syzkaller, and by Brad Spengler (via an off-list discussion), and in both instances it manifested as a triggering of the assert: VM_WARN_ON_VMG(start >= end, vmg); In vma_merge_existing_range(). It seems at least one scenario in which this is occurring is one in which the merge being attempted is due to an madvise() across multiple VMAs which looks like this: start end |<------>| |----------|------| | vma | next | |----------|------| When madvise_walk_vmas() is invoked, we first find vma in the above (determining prev to be equal to vma as we are offset into vma), and then enter the loop. We determine the end of vma that forms part of the range we are madvise()'ing by setting 'tmp' to this value: /* Here vma->vm_start <= start < (end|vma->vm_end) */ tmp = vma->vm_end; We then invoke the madvise() operation via visit(), letting prev get updated to point to vma as part of the operation: /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */ error = visit(vma, &prev, start, tmp, arg); Where the visit() function pointer in this instance is madvise_vma_behavior(). As observed in syzkaller reports, it is ultimately madvise_update_vma() that is invoked, calling vma_modify_flags_name() and vma_modify() in turn. Then, in vma_modify(), we attempt the merge: merged = vma_merge_existing_range(vmg); if (merged) return merged; We invoke this with vmg->start, end set to start, tmp as such: start tmp |<--->| |----------|------| | vma | next | |----------|------| We find ourselves in the merge right scenario, but the one in which we cannot remove the middle (we are offset into vma). Here we have a special case where vmg->start, end get set to perhaps unintuitive values - we intended to shrink the middle VMA and expand the next. This means vmg->start, end are set to... vma->vm_start, start. Now the commit_merge() fails, and vmg->start, end are left like this. This means we return to the rest of vma_modify() with vmg->start, end (here denoted as start', end') set as: start' end' |<-->| |----------|------| | vma | next | |----------|------| So we now erroneously try to split accordingly. This is where the unfortunate ---truncated---
    Added Reference https://git.kernel.org/stable/c/47b16d0462a460000b8f05dfb1292377ac48f3ca
    Added Reference https://git.kernel.org/stable/c/53fd215f7886a1e8dea5a9ca1391dbb697fff601
    Added Reference https://git.kernel.org/stable/c/79636d2981b066acd945117387a9533f56411f6f
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2025-21932 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2025-21932 weaknesses.

NONE - Vulnerability Scoring System
© cvefeed.io
Latest DB Update: Jun. 08, 2025 18:39