CVE-2025-21978
Hyper-V DRM Address Space Leak
Description
In the Linux kernel, the following vulnerability has been resolved: drm/hyperv: Fix address space leak when Hyper-V DRM device is removed When a Hyper-V DRM device is probed, the driver allocates MMIO space for the vram, and maps it cacheable. If the device removed, or in the error path for device probing, the MMIO space is released but no unmap is done. Consequently the kernel address space for the mapping is leaked. Fix this by adding iounmap() calls in the device removal path, and in the error path during device probing.
INFO
Published Date :
April 1, 2025, 4:15 p.m.
Last Modified :
April 1, 2025, 8:26 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-21978
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-21978
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-21978
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Apr. 01, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: drm/hyperv: Fix address space leak when Hyper-V DRM device is removed When a Hyper-V DRM device is probed, the driver allocates MMIO space for the vram, and maps it cacheable. If the device removed, or in the error path for device probing, the MMIO space is released but no unmap is done. Consequently the kernel address space for the mapping is leaked. Fix this by adding iounmap() calls in the device removal path, and in the error path during device probing. Added Reference https://git.kernel.org/stable/c/158242b56bf465a73e1edeac0fe828a8acad4499 Added Reference https://git.kernel.org/stable/c/24f1bbfb2be77dad82489c1468bbb14312aab129 Added Reference https://git.kernel.org/stable/c/ad27b4a51495490b815580d9b935e8eee14d1a9c Added Reference https://git.kernel.org/stable/c/aed709355fd05ef747e1af24a1d5d78cd7feb81e Added Reference https://git.kernel.org/stable/c/c40cd24bfb9bfbb315c118ca14ebe6cf52e2dd1e
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-21978
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-21978
weaknesses.