0.0
NA
CVE-2025-22013
KVM: arm64: FPSIMD/SVE/SME State Eager Save and Flush Vulnerability
Description

In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Unconditionally save+flush host FPSIMD/SVE/SME state There are several problems with the way hyp code lazily saves the host's FPSIMD/SVE state, including: * Host SVE being discarded unexpectedly due to inconsistent configuration of TIF_SVE and CPACR_ELx.ZEN. This has been seen to result in QEMU crashes where SVE is used by memmove(), as reported by Eric Auger: https://issues.redhat.com/browse/RHEL-68997 * Host SVE state is discarded *after* modification by ptrace, which was an unintentional ptrace ABI change introduced with lazy discarding of SVE state. * The host FPMR value can be discarded when running a non-protected VM, where FPMR support is not exposed to a VM, and that VM uses FPSIMD/SVE. In these cases the hyp code does not save the host's FPMR before unbinding the host's FPSIMD/SVE/SME state, leaving a stale value in memory. Avoid these by eagerly saving and "flushing" the host's FPSIMD/SVE/SME state when loading a vCPU such that KVM does not need to save any of the host's FPSIMD/SVE/SME state. For clarity, fpsimd_kvm_prepare() is removed and the necessary call to fpsimd_save_and_flush_cpu_state() is placed in kvm_arch_vcpu_load_fp(). As 'fpsimd_state' and 'fpmr_ptr' should not be used, they are set to NULL; all uses of these will be removed in subsequent patches. Historical problems go back at least as far as v5.17, e.g. erroneous assumptions about TIF_SVE being clear in commit: 8383741ab2e773a9 ("KVM: arm64: Get rid of host SVE tracking/saving") ... and so this eager save+flush probably needs to be backported to ALL stable trees.

INFO

Published Date :

April 8, 2025, 9:15 a.m.

Last Modified :

April 8, 2025, 6:13 p.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

Exploitability Score :

Affected Products

The following products are affected by CVE-2025-22013 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel
References to Advisories, Solutions, and Tools

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2025-22013 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2025-22013 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Apr. 08, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Unconditionally save+flush host FPSIMD/SVE/SME state There are several problems with the way hyp code lazily saves the host's FPSIMD/SVE state, including: * Host SVE being discarded unexpectedly due to inconsistent configuration of TIF_SVE and CPACR_ELx.ZEN. This has been seen to result in QEMU crashes where SVE is used by memmove(), as reported by Eric Auger: https://issues.redhat.com/browse/RHEL-68997 * Host SVE state is discarded *after* modification by ptrace, which was an unintentional ptrace ABI change introduced with lazy discarding of SVE state. * The host FPMR value can be discarded when running a non-protected VM, where FPMR support is not exposed to a VM, and that VM uses FPSIMD/SVE. In these cases the hyp code does not save the host's FPMR before unbinding the host's FPSIMD/SVE/SME state, leaving a stale value in memory. Avoid these by eagerly saving and "flushing" the host's FPSIMD/SVE/SME state when loading a vCPU such that KVM does not need to save any of the host's FPSIMD/SVE/SME state. For clarity, fpsimd_kvm_prepare() is removed and the necessary call to fpsimd_save_and_flush_cpu_state() is placed in kvm_arch_vcpu_load_fp(). As 'fpsimd_state' and 'fpmr_ptr' should not be used, they are set to NULL; all uses of these will be removed in subsequent patches. Historical problems go back at least as far as v5.17, e.g. erroneous assumptions about TIF_SVE being clear in commit: 8383741ab2e773a9 ("KVM: arm64: Get rid of host SVE tracking/saving") ... and so this eager save+flush probably needs to be backported to ALL stable trees.
    Added Reference https://git.kernel.org/stable/c/79e140bba70bcacc5fe15bf8c0b958793fd7d56f
    Added Reference https://git.kernel.org/stable/c/806d5c1e1d2e5502175a24bf70f251648d99c36a
    Added Reference https://git.kernel.org/stable/c/900b444be493b7f404898c785d6605b177a093d0
    Added Reference https://git.kernel.org/stable/c/fbc7e61195e23f744814e78524b73b59faa54ab4
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2025-22013 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2025-22013 weaknesses.

NONE - Vulnerability Scoring System
© cvefeed.io
Latest DB Update: Apr. 21, 2025 14:58