CVE-2025-37834
Linux Kernel: Dirty Swapcache Page Reclamation Vulnerability
Description
In the Linux kernel, the following vulnerability has been resolved: mm/vmscan: don't try to reclaim hwpoison folio Syzkaller reports a bug as follows: Injecting memory failure for pfn 0x18b00e at process virtual address 0x20ffd000 Memory failure: 0x18b00e: dirty swapcache page still referenced by 2 users Memory failure: 0x18b00e: recovery action for dirty swapcache page: Failed page: refcount:2 mapcount:0 mapping:0000000000000000 index:0x20ffd pfn:0x18b00e memcg:ffff0000dd6d9000 anon flags: 0x5ffffe00482011(locked|dirty|arch_1|swapbacked|hwpoison|node=0|zone=2|lastcpupid=0xfffff) raw: 005ffffe00482011 dead000000000100 dead000000000122 ffff0000e232a7c9 raw: 0000000000020ffd 0000000000000000 00000002ffffffff ffff0000dd6d9000 page dumped because: VM_BUG_ON_FOLIO(!folio_test_uptodate(folio)) ------------[ cut here ]------------ kernel BUG at mm/swap_state.c:184! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP Modules linked in: CPU: 0 PID: 60 Comm: kswapd0 Not tainted 6.6.0-gcb097e7de84e #3 Hardware name: linux,dummy-virt (DT) pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : add_to_swap+0xbc/0x158 lr : add_to_swap+0xbc/0x158 sp : ffff800087f37340 x29: ffff800087f37340 x28: fffffc00052c0380 x27: ffff800087f37780 x26: ffff800087f37490 x25: ffff800087f37c78 x24: ffff800087f377a0 x23: ffff800087f37c50 x22: 0000000000000000 x21: fffffc00052c03b4 x20: 0000000000000000 x19: fffffc00052c0380 x18: 0000000000000000 x17: 296f696c6f662865 x16: 7461646f7470755f x15: 747365745f6f696c x14: 6f6621284f494c4f x13: 0000000000000001 x12: ffff600036d8b97b x11: 1fffe00036d8b97a x10: ffff600036d8b97a x9 : dfff800000000000 x8 : 00009fffc9274686 x7 : ffff0001b6c5cbd3 x6 : 0000000000000001 x5 : ffff0000c25896c0 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff0000c25896c0 x0 : 0000000000000000 Call trace: add_to_swap+0xbc/0x158 shrink_folio_list+0x12ac/0x2648 shrink_inactive_list+0x318/0x948 shrink_lruvec+0x450/0x720 shrink_node_memcgs+0x280/0x4a8 shrink_node+0x128/0x978 balance_pgdat+0x4f0/0xb20 kswapd+0x228/0x438 kthread+0x214/0x230 ret_from_fork+0x10/0x20 I can reproduce this issue with the following steps: 1) When a dirty swapcache page is isolated by reclaim process and the page isn't locked, inject memory failure for the page. me_swapcache_dirty() clears uptodate flag and tries to delete from lru, but fails. Reclaim process will put the hwpoisoned page back to lru. 2) The process that maps the hwpoisoned page exits, the page is deleted the page will never be freed and will be in the lru forever. 3) If we trigger a reclaim again and tries to reclaim the page, add_to_swap() will trigger VM_BUG_ON_FOLIO due to the uptodate flag is cleared. To fix it, skip the hwpoisoned page in shrink_folio_list(). Besides, the hwpoison folio may not be unmapped by hwpoison_user_mappings() yet, unmap it in shrink_folio_list(), otherwise the folio will fail to be unmaped by hwpoison_user_mappings() since the folio isn't in lru list.
INFO
Published Date :
May 8, 2025, 7:15 a.m.
Last Modified :
May 8, 2025, 2:39 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-37834
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-37834
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-37834
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
May. 08, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: mm/vmscan: don't try to reclaim hwpoison folio Syzkaller reports a bug as follows: Injecting memory failure for pfn 0x18b00e at process virtual address 0x20ffd000 Memory failure: 0x18b00e: dirty swapcache page still referenced by 2 users Memory failure: 0x18b00e: recovery action for dirty swapcache page: Failed page: refcount:2 mapcount:0 mapping:0000000000000000 index:0x20ffd pfn:0x18b00e memcg:ffff0000dd6d9000 anon flags: 0x5ffffe00482011(locked|dirty|arch_1|swapbacked|hwpoison|node=0|zone=2|lastcpupid=0xfffff) raw: 005ffffe00482011 dead000000000100 dead000000000122 ffff0000e232a7c9 raw: 0000000000020ffd 0000000000000000 00000002ffffffff ffff0000dd6d9000 page dumped because: VM_BUG_ON_FOLIO(!folio_test_uptodate(folio)) ------------[ cut here ]------------ kernel BUG at mm/swap_state.c:184! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP Modules linked in: CPU: 0 PID: 60 Comm: kswapd0 Not tainted 6.6.0-gcb097e7de84e #3 Hardware name: linux,dummy-virt (DT) pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : add_to_swap+0xbc/0x158 lr : add_to_swap+0xbc/0x158 sp : ffff800087f37340 x29: ffff800087f37340 x28: fffffc00052c0380 x27: ffff800087f37780 x26: ffff800087f37490 x25: ffff800087f37c78 x24: ffff800087f377a0 x23: ffff800087f37c50 x22: 0000000000000000 x21: fffffc00052c03b4 x20: 0000000000000000 x19: fffffc00052c0380 x18: 0000000000000000 x17: 296f696c6f662865 x16: 7461646f7470755f x15: 747365745f6f696c x14: 6f6621284f494c4f x13: 0000000000000001 x12: ffff600036d8b97b x11: 1fffe00036d8b97a x10: ffff600036d8b97a x9 : dfff800000000000 x8 : 00009fffc9274686 x7 : ffff0001b6c5cbd3 x6 : 0000000000000001 x5 : ffff0000c25896c0 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff0000c25896c0 x0 : 0000000000000000 Call trace: add_to_swap+0xbc/0x158 shrink_folio_list+0x12ac/0x2648 shrink_inactive_list+0x318/0x948 shrink_lruvec+0x450/0x720 shrink_node_memcgs+0x280/0x4a8 shrink_node+0x128/0x978 balance_pgdat+0x4f0/0xb20 kswapd+0x228/0x438 kthread+0x214/0x230 ret_from_fork+0x10/0x20 I can reproduce this issue with the following steps: 1) When a dirty swapcache page is isolated by reclaim process and the page isn't locked, inject memory failure for the page. me_swapcache_dirty() clears uptodate flag and tries to delete from lru, but fails. Reclaim process will put the hwpoisoned page back to lru. 2) The process that maps the hwpoisoned page exits, the page is deleted the page will never be freed and will be in the lru forever. 3) If we trigger a reclaim again and tries to reclaim the page, add_to_swap() will trigger VM_BUG_ON_FOLIO due to the uptodate flag is cleared. To fix it, skip the hwpoisoned page in shrink_folio_list(). Besides, the hwpoison folio may not be unmapped by hwpoison_user_mappings() yet, unmap it in shrink_folio_list(), otherwise the folio will fail to be unmaped by hwpoison_user_mappings() since the folio isn't in lru list. Added Reference https://git.kernel.org/stable/c/1b0449544c6482179ac84530b61fc192a6527bfd Added Reference https://git.kernel.org/stable/c/1c9798bf8145a92abf45aa9d38a6406d9eb8bdf0 Added Reference https://git.kernel.org/stable/c/912e9f0300c3564b72a8808db406e313193a37ad
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-37834
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-37834
weaknesses.