CVE-2025-38071
Linux Kernel Memory Allocation Crash Vulnerability
Description
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Check return value from memblock_phys_alloc_range() At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of contiguous free memory available at this point, the kernel will crash and burn because memblock_phys_alloc_range() returns 0 on failure, which leads memblock_phys_free() to throw the first 4 MiB of physical memory to the wolves. At a minimum it should fail gracefully with a meaningful diagnostic, but in fact everything seems to work fine without the weird reserve allocation.
INFO
Published Date :
June 18, 2025, 10:15 a.m.
Last Modified :
June 18, 2025, 1:46 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-38071
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-38071
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-38071
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jun. 18, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: x86/mm: Check return value from memblock_phys_alloc_range() At least with CONFIG_PHYSICAL_START=0x100000, if there is < 4 MiB of contiguous free memory available at this point, the kernel will crash and burn because memblock_phys_alloc_range() returns 0 on failure, which leads memblock_phys_free() to throw the first 4 MiB of physical memory to the wolves. At a minimum it should fail gracefully with a meaningful diagnostic, but in fact everything seems to work fine without the weird reserve allocation. Added Reference https://git.kernel.org/stable/c/631ca8909fd5c62b9fda9edda93924311a78a9c4 Added Reference https://git.kernel.org/stable/c/8c18c904d301ffeb33b071eadc55cd6131e1e9be Added Reference https://git.kernel.org/stable/c/bffd5f2815c5234d609725cd0dc2f4bc5de2fc67 Added Reference https://git.kernel.org/stable/c/c6f2694c580c27dca0cf7546ee9b4bfa6b940e38 Added Reference https://git.kernel.org/stable/c/dde4800d2b0f68b945fd81d4fc2d4a10ae25f743
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-38071
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-38071
weaknesses.