CVE-2025-38097
Linux Kernel espintcp Reference Leak
Description
In the Linux kernel, the following vulnerability has been resolved: espintcp: remove encap socket caching to avoid reference leak The current scheme for caching the encap socket can lead to reference leaks when we try to delete the netns. The reference chain is: xfrm_state -> enacp_sk -> netns Since the encap socket is a userspace socket, it holds a reference on the netns. If we delete the espintcp state (through flush or individual delete) before removing the netns, the reference on the socket is dropped and the netns is correctly deleted. Otherwise, the netns may not be reachable anymore (if all processes within the ns have terminated), so we cannot delete the xfrm state to drop its reference on the socket. This patch results in a small (~2% in my tests) performance regression. A GC-type mechanism could be added for the socket cache, to clear references if the state hasn't been used "recently", but it's a lot more complex than just not caching the socket.
INFO
Published Date :
July 3, 2025, 9:15 a.m.
Last Modified :
July 3, 2025, 3:13 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-38097
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-38097
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-38097
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jul. 03, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: espintcp: remove encap socket caching to avoid reference leak The current scheme for caching the encap socket can lead to reference leaks when we try to delete the netns. The reference chain is: xfrm_state -> enacp_sk -> netns Since the encap socket is a userspace socket, it holds a reference on the netns. If we delete the espintcp state (through flush or individual delete) before removing the netns, the reference on the socket is dropped and the netns is correctly deleted. Otherwise, the netns may not be reachable anymore (if all processes within the ns have terminated), so we cannot delete the xfrm state to drop its reference on the socket. This patch results in a small (~2% in my tests) performance regression. A GC-type mechanism could be added for the socket cache, to clear references if the state hasn't been used "recently", but it's a lot more complex than just not caching the socket. Added Reference https://git.kernel.org/stable/c/028363685bd0b7a19b4a820f82dd905b1dc83999 Added Reference https://git.kernel.org/stable/c/74fd327767fb784c5875cf7c4ba1217f26020943 Added Reference https://git.kernel.org/stable/c/9cbca30102028f9ad3d2098f935c4368f581fd07 Added Reference https://git.kernel.org/stable/c/b58a295d10065960bcb9d60cb8ca6ead9837cd27 Added Reference https://git.kernel.org/stable/c/e4cde54b46a87231c77256a633be1bef62687d69
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-38097
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-38097
weaknesses.