CVE-2025-38127
Intel Ice Linux Kernel XDP Queue Rollback Vulnerability
Description
In the Linux kernel, the following vulnerability has been resolved: ice: fix Tx scheduler error handling in XDP callback When the XDP program is loaded, the XDP callback adds new Tx queues. This means that the callback must update the Tx scheduler with the new queue number. In the event of a Tx scheduler failure, the XDP callback should also fail and roll back any changes previously made for XDP preparation. The previous implementation had a bug that not all changes made by the XDP callback were rolled back. This caused the crash with the following call trace: [ +9.549584] ice 0000:ca:00.0: Failed VSI LAN queue config for XDP, error: -5 [ +0.382335] Oops: general protection fault, probably for non-canonical address 0x50a2250a90495525: 0000 [#1] SMP NOPTI [ +0.010710] CPU: 103 UID: 0 PID: 0 Comm: swapper/103 Not tainted 6.14.0-net-next-mar-31+ #14 PREEMPT(voluntary) [ +0.010175] Hardware name: Intel Corporation M50CYP2SBSTD/M50CYP2SBSTD, BIOS SE5C620.86B.01.01.0005.2202160810 02/16/2022 [ +0.010946] RIP: 0010:__ice_update_sample+0x39/0xe0 [ice] [...] [ +0.002715] Call Trace: [ +0.002452] <IRQ> [ +0.002021] ? __die_body.cold+0x19/0x29 [ +0.003922] ? die_addr+0x3c/0x60 [ +0.003319] ? exc_general_protection+0x17c/0x400 [ +0.004707] ? asm_exc_general_protection+0x26/0x30 [ +0.004879] ? __ice_update_sample+0x39/0xe0 [ice] [ +0.004835] ice_napi_poll+0x665/0x680 [ice] [ +0.004320] __napi_poll+0x28/0x190 [ +0.003500] net_rx_action+0x198/0x360 [ +0.003752] ? update_rq_clock+0x39/0x220 [ +0.004013] handle_softirqs+0xf1/0x340 [ +0.003840] ? sched_clock_cpu+0xf/0x1f0 [ +0.003925] __irq_exit_rcu+0xc2/0xe0 [ +0.003665] common_interrupt+0x85/0xa0 [ +0.003839] </IRQ> [ +0.002098] <TASK> [ +0.002106] asm_common_interrupt+0x26/0x40 [ +0.004184] RIP: 0010:cpuidle_enter_state+0xd3/0x690 Fix this by performing the missing unmapping of XDP queues from q_vectors and setting the XDP rings pointer back to NULL after all those queues are released. Also, add an immediate exit from the XDP callback in case of ring preparation failure.
INFO
Published Date :
July 3, 2025, 9:15 a.m.
Last Modified :
July 3, 2025, 3:13 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-38127
.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-38127
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-38127
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jul. 03, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: ice: fix Tx scheduler error handling in XDP callback When the XDP program is loaded, the XDP callback adds new Tx queues. This means that the callback must update the Tx scheduler with the new queue number. In the event of a Tx scheduler failure, the XDP callback should also fail and roll back any changes previously made for XDP preparation. The previous implementation had a bug that not all changes made by the XDP callback were rolled back. This caused the crash with the following call trace: [ +9.549584] ice 0000:ca:00.0: Failed VSI LAN queue config for XDP, error: -5 [ +0.382335] Oops: general protection fault, probably for non-canonical address 0x50a2250a90495525: 0000 [#1] SMP NOPTI [ +0.010710] CPU: 103 UID: 0 PID: 0 Comm: swapper/103 Not tainted 6.14.0-net-next-mar-31+ #14 PREEMPT(voluntary) [ +0.010175] Hardware name: Intel Corporation M50CYP2SBSTD/M50CYP2SBSTD, BIOS SE5C620.86B.01.01.0005.2202160810 02/16/2022 [ +0.010946] RIP: 0010:__ice_update_sample+0x39/0xe0 [ice] [...] [ +0.002715] Call Trace: [ +0.002452] <IRQ> [ +0.002021] ? __die_body.cold+0x19/0x29 [ +0.003922] ? die_addr+0x3c/0x60 [ +0.003319] ? exc_general_protection+0x17c/0x400 [ +0.004707] ? asm_exc_general_protection+0x26/0x30 [ +0.004879] ? __ice_update_sample+0x39/0xe0 [ice] [ +0.004835] ice_napi_poll+0x665/0x680 [ice] [ +0.004320] __napi_poll+0x28/0x190 [ +0.003500] net_rx_action+0x198/0x360 [ +0.003752] ? update_rq_clock+0x39/0x220 [ +0.004013] handle_softirqs+0xf1/0x340 [ +0.003840] ? sched_clock_cpu+0xf/0x1f0 [ +0.003925] __irq_exit_rcu+0xc2/0xe0 [ +0.003665] common_interrupt+0x85/0xa0 [ +0.003839] </IRQ> [ +0.002098] <TASK> [ +0.002106] asm_common_interrupt+0x26/0x40 [ +0.004184] RIP: 0010:cpuidle_enter_state+0xd3/0x690 Fix this by performing the missing unmapping of XDP queues from q_vectors and setting the XDP rings pointer back to NULL after all those queues are released. Also, add an immediate exit from the XDP callback in case of ring preparation failure. Added Reference https://git.kernel.org/stable/c/0153f36041b8e52019ebfa8629c13bf8f9b0a951 Added Reference https://git.kernel.org/stable/c/0e061abaad1498c5b76c10c594d4359ceb6b9145 Added Reference https://git.kernel.org/stable/c/1d3c5d0dec6797eca3a861dab0816fa9505d9c3e Added Reference https://git.kernel.org/stable/c/276849954d7cbe6eec827b21fe2df43f9bf07011
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-38127
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-38127
weaknesses.