0.0
NA
CVE-2025-38236
Linux Unix af_unix Use-After-Free Vulnerability
Description

In the Linux kernel, the following vulnerability has been resolved: af_unix: Don't leave consecutive consumed OOB skbs. Jann Horn reported a use-after-free in unix_stream_read_generic(). The following sequences reproduce the issue: $ python3 from socket import * s1, s2 = socketpair(AF_UNIX, SOCK_STREAM) s1.send(b'x', MSG_OOB) s2.recv(1, MSG_OOB) # leave a consumed OOB skb s1.send(b'y', MSG_OOB) s2.recv(1, MSG_OOB) # leave a consumed OOB skb s1.send(b'z', MSG_OOB) s2.recv(1) # recv 'z' illegally s2.recv(1, MSG_OOB) # access 'z' skb (use-after-free) Even though a user reads OOB data, the skb holding the data stays on the recv queue to mark the OOB boundary and break the next recv(). After the last send() in the scenario above, the sk2's recv queue has 2 leading consumed OOB skbs and 1 real OOB skb. Then, the following happens during the next recv() without MSG_OOB 1. unix_stream_read_generic() peeks the first consumed OOB skb 2. manage_oob() returns the next consumed OOB skb 3. unix_stream_read_generic() fetches the next not-yet-consumed OOB skb 4. unix_stream_read_generic() reads and frees the OOB skb , and the last recv(MSG_OOB) triggers KASAN splat. The 3. above occurs because of the SO_PEEK_OFF code, which does not expect unix_skb_len(skb) to be 0, but this is true for such consumed OOB skbs. while (skip >= unix_skb_len(skb)) { skip -= unix_skb_len(skb); skb = skb_peek_next(skb, &sk->sk_receive_queue); ... } In addition to this use-after-free, there is another issue that ioctl(SIOCATMARK) does not function properly with consecutive consumed OOB skbs. So, nothing good comes out of such a situation. Instead of complicating manage_oob(), ioctl() handling, and the next ECONNRESET fix by introducing a loop for consecutive consumed OOB skbs, let's not leave such consecutive OOB unnecessarily. Now, while receiving an OOB skb in unix_stream_recv_urg(), if its previous skb is a consumed OOB skb, it is freed. [0]: BUG: KASAN: slab-use-after-free in unix_stream_read_actor (net/unix/af_unix.c:3027) Read of size 4 at addr ffff888106ef2904 by task python3/315 CPU: 2 UID: 0 PID: 315 Comm: python3 Not tainted 6.16.0-rc1-00407-gec315832f6f9 #8 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:122) print_report (mm/kasan/report.c:409 mm/kasan/report.c:521) kasan_report (mm/kasan/report.c:636) unix_stream_read_actor (net/unix/af_unix.c:3027) unix_stream_read_generic (net/unix/af_unix.c:2708 net/unix/af_unix.c:2847) unix_stream_recvmsg (net/unix/af_unix.c:3048) sock_recvmsg (net/socket.c:1063 (discriminator 20) net/socket.c:1085 (discriminator 20)) __sys_recvfrom (net/socket.c:2278) __x64_sys_recvfrom (net/socket.c:2291 (discriminator 1) net/socket.c:2287 (discriminator 1) net/socket.c:2287 (discriminator 1)) do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1)) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) RIP: 0033:0x7f8911fcea06 Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08 RSP: 002b:00007fffdb0dccb0 EFLAGS: 00000202 ORIG_RAX: 000000000000002d RAX: ffffffffffffffda RBX: 00007fffdb0dcdc8 RCX: 00007f8911fcea06 RDX: 0000000000000001 RSI: 00007f8911a5e060 RDI: 0000000000000006 RBP: 00007fffdb0dccd0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000202 R12: 00007f89119a7d20 R13: ffffffffc4653600 R14: 0000000000000000 R15: 0000000000000000 </TASK> Allocated by task 315: kasan_save_stack (mm/kasan/common.c:48) kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1)) __kasan_slab_alloc (mm/kasan/common.c:348) kmem_cache_alloc_ ---truncated---

INFO

Published Date :

July 8, 2025, 8:15 a.m.

Last Modified :

July 8, 2025, 4:18 p.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

Exploitability Score :

Affected Products

The following products are affected by CVE-2025-38236 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2025-38236 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2025-38236 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Jul. 08, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: af_unix: Don't leave consecutive consumed OOB skbs. Jann Horn reported a use-after-free in unix_stream_read_generic(). The following sequences reproduce the issue: $ python3 from socket import * s1, s2 = socketpair(AF_UNIX, SOCK_STREAM) s1.send(b'x', MSG_OOB) s2.recv(1, MSG_OOB) # leave a consumed OOB skb s1.send(b'y', MSG_OOB) s2.recv(1, MSG_OOB) # leave a consumed OOB skb s1.send(b'z', MSG_OOB) s2.recv(1) # recv 'z' illegally s2.recv(1, MSG_OOB) # access 'z' skb (use-after-free) Even though a user reads OOB data, the skb holding the data stays on the recv queue to mark the OOB boundary and break the next recv(). After the last send() in the scenario above, the sk2's recv queue has 2 leading consumed OOB skbs and 1 real OOB skb. Then, the following happens during the next recv() without MSG_OOB 1. unix_stream_read_generic() peeks the first consumed OOB skb 2. manage_oob() returns the next consumed OOB skb 3. unix_stream_read_generic() fetches the next not-yet-consumed OOB skb 4. unix_stream_read_generic() reads and frees the OOB skb , and the last recv(MSG_OOB) triggers KASAN splat. The 3. above occurs because of the SO_PEEK_OFF code, which does not expect unix_skb_len(skb) to be 0, but this is true for such consumed OOB skbs. while (skip >= unix_skb_len(skb)) { skip -= unix_skb_len(skb); skb = skb_peek_next(skb, &sk->sk_receive_queue); ... } In addition to this use-after-free, there is another issue that ioctl(SIOCATMARK) does not function properly with consecutive consumed OOB skbs. So, nothing good comes out of such a situation. Instead of complicating manage_oob(), ioctl() handling, and the next ECONNRESET fix by introducing a loop for consecutive consumed OOB skbs, let's not leave such consecutive OOB unnecessarily. Now, while receiving an OOB skb in unix_stream_recv_urg(), if its previous skb is a consumed OOB skb, it is freed. [0]: BUG: KASAN: slab-use-after-free in unix_stream_read_actor (net/unix/af_unix.c:3027) Read of size 4 at addr ffff888106ef2904 by task python3/315 CPU: 2 UID: 0 PID: 315 Comm: python3 Not tainted 6.16.0-rc1-00407-gec315832f6f9 #8 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:122) print_report (mm/kasan/report.c:409 mm/kasan/report.c:521) kasan_report (mm/kasan/report.c:636) unix_stream_read_actor (net/unix/af_unix.c:3027) unix_stream_read_generic (net/unix/af_unix.c:2708 net/unix/af_unix.c:2847) unix_stream_recvmsg (net/unix/af_unix.c:3048) sock_recvmsg (net/socket.c:1063 (discriminator 20) net/socket.c:1085 (discriminator 20)) __sys_recvfrom (net/socket.c:2278) __x64_sys_recvfrom (net/socket.c:2291 (discriminator 1) net/socket.c:2287 (discriminator 1) net/socket.c:2287 (discriminator 1)) do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1)) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130) RIP: 0033:0x7f8911fcea06 Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08 RSP: 002b:00007fffdb0dccb0 EFLAGS: 00000202 ORIG_RAX: 000000000000002d RAX: ffffffffffffffda RBX: 00007fffdb0dcdc8 RCX: 00007f8911fcea06 RDX: 0000000000000001 RSI: 00007f8911a5e060 RDI: 0000000000000006 RBP: 00007fffdb0dccd0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000202 R12: 00007f89119a7d20 R13: ffffffffc4653600 R14: 0000000000000000 R15: 0000000000000000 </TASK> Allocated by task 315: kasan_save_stack (mm/kasan/common.c:48) kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1)) __kasan_slab_alloc (mm/kasan/common.c:348) kmem_cache_alloc_ ---truncated---
    Added Reference https://git.kernel.org/stable/c/32ca245464e1479bfea8592b9db227fdc1641705
    Added Reference https://git.kernel.org/stable/c/61a9ad7b69ce688697e5f63332f03e17725353bc
    Added Reference https://git.kernel.org/stable/c/8db4d2d026e6e3649832bfe23b96c4acff0756db
    Added Reference https://git.kernel.org/stable/c/a12237865b48a73183df252029ff5065d73d305e
    Added Reference https://git.kernel.org/stable/c/fad0a2c16062ac7c606b93166a7ce9d265bab976
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2025-38236 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2025-38236 weaknesses.

NONE - Vulnerability Scoring System
© cvefeed.io
Latest DB Update: Jul. 19, 2025 17:44