CVE-2025-38248
Linux Kernel Bridge Use-After-Free Vulnerability
Description
In the Linux kernel, the following vulnerability has been resolved: bridge: mcast: Fix use-after-free during router port configuration The bridge maintains a global list of ports behind which a multicast router resides. The list is consulted during forwarding to ensure multicast packets are forwarded to these ports even if the ports are not member in the matching MDB entry. When per-VLAN multicast snooping is enabled, the per-port multicast context is disabled on each port and the port is removed from the global router port list: # ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 # ip link add name dummy1 up master br1 type dummy # ip link set dev dummy1 type bridge_slave mcast_router 2 $ bridge -d mdb show | grep router router ports on br1: dummy1 # ip link set dev br1 type bridge mcast_vlan_snooping 1 $ bridge -d mdb show | grep router However, the port can be re-added to the global list even when per-VLAN multicast snooping is enabled: # ip link set dev dummy1 type bridge_slave mcast_router 0 # ip link set dev dummy1 type bridge_slave mcast_router 2 $ bridge -d mdb show | grep router router ports on br1: dummy1 Since commit 4b30ae9adb04 ("net: bridge: mcast: re-implement br_multicast_{enable, disable}_port functions"), when per-VLAN multicast snooping is enabled, multicast disablement on a port will disable the per-{port, VLAN} multicast contexts and not the per-port one. As a result, a port will remain in the global router port list even after it is deleted. This will lead to a use-after-free [1] when the list is traversed (when adding a new port to the list, for example): # ip link del dev dummy1 # ip link add name dummy2 up master br1 type dummy # ip link set dev dummy2 type bridge_slave mcast_router 2 Similarly, stale entries can also be found in the per-VLAN router port list. When per-VLAN multicast snooping is disabled, the per-{port, VLAN} contexts are disabled on each port and the port is removed from the per-VLAN router port list: # ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 mcast_vlan_snooping 1 # ip link add name dummy1 up master br1 type dummy # bridge vlan add vid 2 dev dummy1 # bridge vlan global set vid 2 dev br1 mcast_snooping 1 # bridge vlan set vid 2 dev dummy1 mcast_router 2 $ bridge vlan global show dev br1 vid 2 | grep router router ports: dummy1 # ip link set dev br1 type bridge mcast_vlan_snooping 0 $ bridge vlan global show dev br1 vid 2 | grep router However, the port can be re-added to the per-VLAN list even when per-VLAN multicast snooping is disabled: # bridge vlan set vid 2 dev dummy1 mcast_router 0 # bridge vlan set vid 2 dev dummy1 mcast_router 2 $ bridge vlan global show dev br1 vid 2 | grep router router ports: dummy1 When the VLAN is deleted from the port, the per-{port, VLAN} multicast context will not be disabled since multicast snooping is not enabled on the VLAN. As a result, the port will remain in the per-VLAN router port list even after it is no longer member in the VLAN. This will lead to a use-after-free [2] when the list is traversed (when adding a new port to the list, for example): # ip link add name dummy2 up master br1 type dummy # bridge vlan add vid 2 dev dummy2 # bridge vlan del vid 2 dev dummy1 # bridge vlan set vid 2 dev dummy2 mcast_router 2 Fix these issues by removing the port from the relevant (global or per-VLAN) router port list in br_multicast_port_ctx_deinit(). The function is invoked during port deletion with the per-port multicast context and during VLAN deletion with the per-{port, VLAN} multicast context. Note that deleting the multicast router timer is not enough as it only takes care of the temporary multicast router states (1 or 3) and not the permanent one (2). [1] BUG: KASAN: slab-out-of-bounds in br_multicast_add_router.part.0+0x3f1/0x560 Write of size 8 at addr ffff888004a67328 by task ip/384 [...] Call Trace: <TASK> dump_stack ---truncated---
INFO
Published Date :
July 9, 2025, 11:15 a.m.
Last Modified :
July 10, 2025, 1:17 p.m.
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Remotely Exploitable :
No
Impact Score :
Exploitability Score :
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-38248
.
URL | Resource |
---|---|
https://git.kernel.org/stable/c/7544f3f5b0b58c396f374d060898b5939da31709 | |
https://git.kernel.org/stable/c/f05a4f9e959e0fc098046044c650acf897ea52d2 |
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-38248
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-38248
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jul. 09, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: bridge: mcast: Fix use-after-free during router port configuration The bridge maintains a global list of ports behind which a multicast router resides. The list is consulted during forwarding to ensure multicast packets are forwarded to these ports even if the ports are not member in the matching MDB entry. When per-VLAN multicast snooping is enabled, the per-port multicast context is disabled on each port and the port is removed from the global router port list: # ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 # ip link add name dummy1 up master br1 type dummy # ip link set dev dummy1 type bridge_slave mcast_router 2 $ bridge -d mdb show | grep router router ports on br1: dummy1 # ip link set dev br1 type bridge mcast_vlan_snooping 1 $ bridge -d mdb show | grep router However, the port can be re-added to the global list even when per-VLAN multicast snooping is enabled: # ip link set dev dummy1 type bridge_slave mcast_router 0 # ip link set dev dummy1 type bridge_slave mcast_router 2 $ bridge -d mdb show | grep router router ports on br1: dummy1 Since commit 4b30ae9adb04 ("net: bridge: mcast: re-implement br_multicast_{enable, disable}_port functions"), when per-VLAN multicast snooping is enabled, multicast disablement on a port will disable the per-{port, VLAN} multicast contexts and not the per-port one. As a result, a port will remain in the global router port list even after it is deleted. This will lead to a use-after-free [1] when the list is traversed (when adding a new port to the list, for example): # ip link del dev dummy1 # ip link add name dummy2 up master br1 type dummy # ip link set dev dummy2 type bridge_slave mcast_router 2 Similarly, stale entries can also be found in the per-VLAN router port list. When per-VLAN multicast snooping is disabled, the per-{port, VLAN} contexts are disabled on each port and the port is removed from the per-VLAN router port list: # ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 mcast_vlan_snooping 1 # ip link add name dummy1 up master br1 type dummy # bridge vlan add vid 2 dev dummy1 # bridge vlan global set vid 2 dev br1 mcast_snooping 1 # bridge vlan set vid 2 dev dummy1 mcast_router 2 $ bridge vlan global show dev br1 vid 2 | grep router router ports: dummy1 # ip link set dev br1 type bridge mcast_vlan_snooping 0 $ bridge vlan global show dev br1 vid 2 | grep router However, the port can be re-added to the per-VLAN list even when per-VLAN multicast snooping is disabled: # bridge vlan set vid 2 dev dummy1 mcast_router 0 # bridge vlan set vid 2 dev dummy1 mcast_router 2 $ bridge vlan global show dev br1 vid 2 | grep router router ports: dummy1 When the VLAN is deleted from the port, the per-{port, VLAN} multicast context will not be disabled since multicast snooping is not enabled on the VLAN. As a result, the port will remain in the per-VLAN router port list even after it is no longer member in the VLAN. This will lead to a use-after-free [2] when the list is traversed (when adding a new port to the list, for example): # ip link add name dummy2 up master br1 type dummy # bridge vlan add vid 2 dev dummy2 # bridge vlan del vid 2 dev dummy1 # bridge vlan set vid 2 dev dummy2 mcast_router 2 Fix these issues by removing the port from the relevant (global or per-VLAN) router port list in br_multicast_port_ctx_deinit(). The function is invoked during port deletion with the per-port multicast context and during VLAN deletion with the per-{port, VLAN} multicast context. Note that deleting the multicast router timer is not enough as it only takes care of the temporary multicast router states (1 or 3) and not the permanent one (2). [1] BUG: KASAN: slab-out-of-bounds in br_multicast_add_router.part.0+0x3f1/0x560 Write of size 8 at addr ffff888004a67328 by task ip/384 [...] Call Trace: <TASK> dump_stack ---truncated--- Added Reference https://git.kernel.org/stable/c/7544f3f5b0b58c396f374d060898b5939da31709 Added Reference https://git.kernel.org/stable/c/f05a4f9e959e0fc098046044c650acf897ea52d2
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-38248
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-38248
weaknesses.