0.0
NA
CVE-2025-38488
Linux Samba SMB Client Use-After-Free Vulnerability
Description

In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free in crypt_message when using async crypto The CVE-2024-50047 fix removed asynchronous crypto handling from crypt_message(), assuming all crypto operations are synchronous. However, when hardware crypto accelerators are used, this can cause use-after-free crashes: crypt_message() // Allocate the creq buffer containing the req creq = smb2_get_aead_req(..., &req); // Async encryption returns -EINPROGRESS immediately rc = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); // Free creq while async operation is still in progress kvfree_sensitive(creq, ...); Hardware crypto modules often implement async AEAD operations for performance. When crypto_aead_encrypt/decrypt() returns -EINPROGRESS, the operation completes asynchronously. Without crypto_wait_req(), the function immediately frees the request buffer, leading to crashes when the driver later accesses the freed memory. This results in a use-after-free condition when the hardware crypto driver later accesses the freed request structure, leading to kernel crashes with NULL pointer dereferences. The issue occurs because crypto_alloc_aead() with mask=0 doesn't guarantee synchronous operation. Even without CRYPTO_ALG_ASYNC in the mask, async implementations can be selected. Fix by restoring the async crypto handling: - DECLARE_CRYPTO_WAIT(wait) for completion tracking - aead_request_set_callback() for async completion notification - crypto_wait_req() to wait for operation completion This ensures the request buffer isn't freed until the crypto operation completes, whether synchronous or asynchronous, while preserving the CVE-2024-50047 fix.

INFO

Published Date :

July 28, 2025, 12:15 p.m.

Last Modified :

July 29, 2025, 2:14 p.m.

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67

Remotely Exploitable :

No

Impact Score :

Exploitability Score :

Affected Products

The following products are affected by CVE-2025-38488 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2025-38488 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2025-38488 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Jul. 28, 2025

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free in crypt_message when using async crypto The CVE-2024-50047 fix removed asynchronous crypto handling from crypt_message(), assuming all crypto operations are synchronous. However, when hardware crypto accelerators are used, this can cause use-after-free crashes: crypt_message() // Allocate the creq buffer containing the req creq = smb2_get_aead_req(..., &req); // Async encryption returns -EINPROGRESS immediately rc = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); // Free creq while async operation is still in progress kvfree_sensitive(creq, ...); Hardware crypto modules often implement async AEAD operations for performance. When crypto_aead_encrypt/decrypt() returns -EINPROGRESS, the operation completes asynchronously. Without crypto_wait_req(), the function immediately frees the request buffer, leading to crashes when the driver later accesses the freed memory. This results in a use-after-free condition when the hardware crypto driver later accesses the freed request structure, leading to kernel crashes with NULL pointer dereferences. The issue occurs because crypto_alloc_aead() with mask=0 doesn't guarantee synchronous operation. Even without CRYPTO_ALG_ASYNC in the mask, async implementations can be selected. Fix by restoring the async crypto handling: - DECLARE_CRYPTO_WAIT(wait) for completion tracking - aead_request_set_callback() for async completion notification - crypto_wait_req() to wait for operation completion This ensures the request buffer isn't freed until the crypto operation completes, whether synchronous or asynchronous, while preserving the CVE-2024-50047 fix.
    Added Reference https://git.kernel.org/stable/c/15a0a5de49507062bc3be4014a403d8cea5533de
    Added Reference https://git.kernel.org/stable/c/2a76bc2b24ed889a689fb1c9015307bf16aafb5b
    Added Reference https://git.kernel.org/stable/c/8ac90f6824fc44d2e55a82503ddfc95defb19ae0
    Added Reference https://git.kernel.org/stable/c/9a1d3e8d40f151c2d5a5f40c410e6e433f62f438
    Added Reference https://git.kernel.org/stable/c/b220bed63330c0e1733dc06ea8e75d5b9962b6b6
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2025-38488 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2025-38488 weaknesses.

NONE - Vulnerability Scoring System