CVE-2025-39928
i2c: rtl9300: ensure data length is within supported range
Description
In the Linux kernel, the following vulnerability has been resolved: i2c: rtl9300: ensure data length is within supported range Add an explicit check for the xfer length to 'rtl9300_i2c_config_xfer' to ensure the data length isn't within the supported range. In particular a data length of 0 is not supported by the hardware and causes unintended or destructive behaviour. This limitation becomes obvious when looking at the register documentation [1]. 4 bits are reserved for DATA_WIDTH and the value of these 4 bits is used as N + 1, allowing a data length range of 1 <= len <= 16. Affected by this is the SMBus Quick Operation which works with a data length of 0. Passing 0 as the length causes an underflow of the value due to: (len - 1) & 0xf and effectively specifying a transfer length of 16 via the registers. This causes a 16-byte write operation instead of a Quick Write. For example, on SFP modules without write-protected EEPROM this soft-bricks them by overwriting some initial bytes. For completeness, also add a quirk for the zero length. [1] https://svanheule.net/realtek/longan/register/i2c_mst1_ctrl2
INFO
Published Date :
Oct. 1, 2025, 8:15 a.m.
Last Modified :
Oct. 1, 2025, 8:15 a.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products
The following products are affected by CVE-2025-39928
vulnerability.
Even if cvefeed.io
is aware of the exact versions of the
products
that
are
affected, the information is not represented in the table below.
No affected product recoded yet
Solution
- Check data length is within the supported range.
- Implement hardware-specific quirks for zero length.
- Apply the provided patch to the Linux kernel.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-39928
.
URL | Resource |
---|---|
https://git.kernel.org/stable/c/06418cb5a1a542a003fdb4ad8e76ea542d57cfba | |
https://git.kernel.org/stable/c/c91382328fc89f73144d5582f2d8f1dd3e41c8f7 |
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-39928
is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-39928
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-39928
vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-39928
vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Oct. 01, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: i2c: rtl9300: ensure data length is within supported range Add an explicit check for the xfer length to 'rtl9300_i2c_config_xfer' to ensure the data length isn't within the supported range. In particular a data length of 0 is not supported by the hardware and causes unintended or destructive behaviour. This limitation becomes obvious when looking at the register documentation [1]. 4 bits are reserved for DATA_WIDTH and the value of these 4 bits is used as N + 1, allowing a data length range of 1 <= len <= 16. Affected by this is the SMBus Quick Operation which works with a data length of 0. Passing 0 as the length causes an underflow of the value due to: (len - 1) & 0xf and effectively specifying a transfer length of 16 via the registers. This causes a 16-byte write operation instead of a Quick Write. For example, on SFP modules without write-protected EEPROM this soft-bricks them by overwriting some initial bytes. For completeness, also add a quirk for the zero length. [1] https://svanheule.net/realtek/longan/register/i2c_mst1_ctrl2 Added Reference https://git.kernel.org/stable/c/06418cb5a1a542a003fdb4ad8e76ea542d57cfba Added Reference https://git.kernel.org/stable/c/c91382328fc89f73144d5582f2d8f1dd3e41c8f7