CVE-2025-68169
netpoll: Fix deadlock in memory allocation under spinlock
Description
In the Linux kernel, the following vulnerability has been resolved: netpoll: Fix deadlock in memory allocation under spinlock Fix a AA deadlock in refill_skbs() where memory allocation while holding skb_pool->lock can trigger a recursive lock acquisition attempt. The deadlock scenario occurs when the system is under severe memory pressure: 1. refill_skbs() acquires skb_pool->lock (spinlock) 2. alloc_skb() is called while holding the lock 3. Memory allocator fails and calls slab_out_of_memory() 4. This triggers printk() for the OOM warning 5. The console output path calls netpoll_send_udp() 6. netpoll_send_udp() attempts to acquire the same skb_pool->lock 7. Deadlock: the lock is already held by the same CPU Call stack: refill_skbs() spin_lock_irqsave(&skb_pool->lock) <- lock acquired __alloc_skb() kmem_cache_alloc_node_noprof() slab_out_of_memory() printk() console_flush_all() netpoll_send_udp() skb_dequeue() spin_lock_irqsave(&skb_pool->lock) <- deadlock attempt This bug was exposed by commit 248f6571fd4c51 ("netpoll: Optimize skb refilling on critical path") which removed refill_skbs() from the critical path (where nested printk was being deferred), letting nested printk being called from inside refill_skbs() Refactor refill_skbs() to never allocate memory while holding the spinlock. Another possible solution to fix this problem is protecting the refill_skbs() from nested printks, basically calling printk_deferred_{enter,exit}() in refill_skbs(), then, any nested pr_warn() would be deferred. I prefer this approach, given I _think_ it might be a good idea to move the alloc_skb() from GFP_ATOMIC to GFP_KERNEL in the future, so, having the alloc_skb() outside of the lock will be necessary step. There is a possible TOCTOU issue when checking for the pool length, and queueing the new allocated skb, but, this is not an issue, given that an extra SKB in the pool is harmless and it will be eventually used.
INFO
Published Date :
Dec. 16, 2025, 2:15 p.m.
Last Modified :
Dec. 16, 2025, 2:15 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Solution
- Avoid memory allocation while holding spinlocks.
- Defer nested printk calls within refill_skbs.
- Move alloc_skb outside the spinlock.
- Update kernel to the patched version.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-68169.
| URL | Resource |
|---|---|
| https://git.kernel.org/stable/c/06742a3ab884d7428c9050b205ffcf6a8a548397 | |
| https://git.kernel.org/stable/c/327c20c21d80e0d87834b392d83ae73c955ad8ff |
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-68169 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-68169
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-68169 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-68169 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Dec. 16, 2025
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: netpoll: Fix deadlock in memory allocation under spinlock Fix a AA deadlock in refill_skbs() where memory allocation while holding skb_pool->lock can trigger a recursive lock acquisition attempt. The deadlock scenario occurs when the system is under severe memory pressure: 1. refill_skbs() acquires skb_pool->lock (spinlock) 2. alloc_skb() is called while holding the lock 3. Memory allocator fails and calls slab_out_of_memory() 4. This triggers printk() for the OOM warning 5. The console output path calls netpoll_send_udp() 6. netpoll_send_udp() attempts to acquire the same skb_pool->lock 7. Deadlock: the lock is already held by the same CPU Call stack: refill_skbs() spin_lock_irqsave(&skb_pool->lock) <- lock acquired __alloc_skb() kmem_cache_alloc_node_noprof() slab_out_of_memory() printk() console_flush_all() netpoll_send_udp() skb_dequeue() spin_lock_irqsave(&skb_pool->lock) <- deadlock attempt This bug was exposed by commit 248f6571fd4c51 ("netpoll: Optimize skb refilling on critical path") which removed refill_skbs() from the critical path (where nested printk was being deferred), letting nested printk being called from inside refill_skbs() Refactor refill_skbs() to never allocate memory while holding the spinlock. Another possible solution to fix this problem is protecting the refill_skbs() from nested printks, basically calling printk_deferred_{enter,exit}() in refill_skbs(), then, any nested pr_warn() would be deferred. I prefer this approach, given I _think_ it might be a good idea to move the alloc_skb() from GFP_ATOMIC to GFP_KERNEL in the future, so, having the alloc_skb() outside of the lock will be necessary step. There is a possible TOCTOU issue when checking for the pool length, and queueing the new allocated skb, but, this is not an issue, given that an extra SKB in the pool is harmless and it will be eventually used. Added Reference https://git.kernel.org/stable/c/06742a3ab884d7428c9050b205ffcf6a8a548397 Added Reference https://git.kernel.org/stable/c/327c20c21d80e0d87834b392d83ae73c955ad8ff