CVE-2025-68774
hfsplus: fix missing hfs_bnode_get() in __hfs_bnode_create
Description
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix missing hfs_bnode_get() in __hfs_bnode_create When sync() and link() are called concurrently, both threads may enter hfs_bnode_find() without finding the node in the hash table and proceed to create it. Thread A: hfsplus_write_inode() -> hfsplus_write_system_inode() -> hfs_btree_write() -> hfs_bnode_find(tree, 0) -> __hfs_bnode_create(tree, 0) Thread B: hfsplus_create_cat() -> hfs_brec_insert() -> hfs_bnode_split() -> hfs_bmap_alloc() -> hfs_bnode_find(tree, 0) -> __hfs_bnode_create(tree, 0) In this case, thread A creates the bnode, sets refcnt=1, and hashes it. Thread B also tries to create the same bnode, notices it has already been inserted, drops its own instance, and uses the hashed one without getting the node. ``` node2 = hfs_bnode_findhash(tree, cnid); if (!node2) { <- Thread A hash = hfs_bnode_hash(cnid); node->next_hash = tree->node_hash[hash]; tree->node_hash[hash] = node; tree->node_hash_cnt++; } else { <- Thread B spin_unlock(&tree->hash_lock); kfree(node); wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags)); return node2; } ``` However, hfs_bnode_find() requires each call to take a reference. Here both threads end up setting refcnt=1. When they later put the node, this triggers: BUG_ON(!atomic_read(&node->refcnt)) In this scenario, Thread B in fact finds the node in the hash table rather than creating a new one, and thus must take a reference. Fix this by calling hfs_bnode_get() when reusing a bnode newly created by another thread to ensure the refcount is updated correctly. A similar bug was fixed in HFS long ago in commit a9dc087fd3c4 ("fix missing hfs_bnode_get() in __hfs_bnode_create") but the same issue remained in HFS+ until now.
INFO
Published Date :
Jan. 13, 2026, 4:15 p.m.
Last Modified :
Jan. 13, 2026, 4:15 p.m.
Remotely Exploit :
No
Source :
416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products
The following products are affected by CVE-2025-68774
vulnerability.
Even if cvefeed.io is aware of the exact versions of the
products
that
are
affected, the information is not represented in the table below.
No affected product recoded yet
Solution
- Update the Linux kernel to the latest version.
- Ensure the system uses a patched kernel release.
- Verify kernel configuration for HFS+ support.
References to Advisories, Solutions, and Tools
Here, you will find a curated list of external links that provide in-depth
information, practical solutions, and valuable tools related to
CVE-2025-68774.
CWE - Common Weakness Enumeration
While CVE identifies
specific instances of vulnerabilities, CWE categorizes the common flaws or
weaknesses that can lead to vulnerabilities. CVE-2025-68774 is
associated with the following CWEs:
Common Attack Pattern Enumeration and Classification (CAPEC)
Common Attack Pattern Enumeration and Classification
(CAPEC)
stores attack patterns, which are descriptions of the common attributes and
approaches employed by adversaries to exploit the CVE-2025-68774
weaknesses.
We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).
Results are limited to the first 15 repositories due to potential performance issues.
The following list is the news that have been mention
CVE-2025-68774 vulnerability anywhere in the article.
The following table lists the changes that have been made to the
CVE-2025-68774 vulnerability over time.
Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.
-
New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67
Jan. 13, 2026
Action Type Old Value New Value Added Description In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix missing hfs_bnode_get() in __hfs_bnode_create When sync() and link() are called concurrently, both threads may enter hfs_bnode_find() without finding the node in the hash table and proceed to create it. Thread A: hfsplus_write_inode() -> hfsplus_write_system_inode() -> hfs_btree_write() -> hfs_bnode_find(tree, 0) -> __hfs_bnode_create(tree, 0) Thread B: hfsplus_create_cat() -> hfs_brec_insert() -> hfs_bnode_split() -> hfs_bmap_alloc() -> hfs_bnode_find(tree, 0) -> __hfs_bnode_create(tree, 0) In this case, thread A creates the bnode, sets refcnt=1, and hashes it. Thread B also tries to create the same bnode, notices it has already been inserted, drops its own instance, and uses the hashed one without getting the node. ``` node2 = hfs_bnode_findhash(tree, cnid); if (!node2) { <- Thread A hash = hfs_bnode_hash(cnid); node->next_hash = tree->node_hash[hash]; tree->node_hash[hash] = node; tree->node_hash_cnt++; } else { <- Thread B spin_unlock(&tree->hash_lock); kfree(node); wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags)); return node2; } ``` However, hfs_bnode_find() requires each call to take a reference. Here both threads end up setting refcnt=1. When they later put the node, this triggers: BUG_ON(!atomic_read(&node->refcnt)) In this scenario, Thread B in fact finds the node in the hash table rather than creating a new one, and thus must take a reference. Fix this by calling hfs_bnode_get() when reusing a bnode newly created by another thread to ensure the refcount is updated correctly. A similar bug was fixed in HFS long ago in commit a9dc087fd3c4 ("fix missing hfs_bnode_get() in __hfs_bnode_create") but the same issue remained in HFS+ until now. Added Reference https://git.kernel.org/stable/c/152af114287851583cf7e0abc10129941f19466a Added Reference https://git.kernel.org/stable/c/457f795e7abd7770de10216d7f9994a3f12a56d6 Added Reference https://git.kernel.org/stable/c/5882e7c8cdbb5e254a69628b780acff89c78071e Added Reference https://git.kernel.org/stable/c/b68dc4134b18a3922cd33439ec614aad4172bc86 Added Reference https://git.kernel.org/stable/c/b9d1c6bb5f19460074ce9862cb80be86b5fb0a50